Skip to main content
Log in

Synthesis of magnetic nanoparticles and their application to bioassays

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Magnetic nanoparticles have been attracting much interest as a labeling material in the fields of advanced biological and medical applications such as drug delivery, magnetic resonance imaging, and array-based assaying. In this review, synthesis of iron oxide magnetic nanoparticles via a reverse micelle system and modification of their surface by an organosilane agent are discussed. Furthermore, as a practical biological assay system, the magnetic detection of biomolecular interactions is demonstrated by using the combination of a patterned substrate modified with a self-assembled monolayer and the magnetic nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Boal AK (2004) Synthesis and application of magnetic nanoparticles. In: Rotello V (ed) Nanoparticles - Building blocks for nanotechnology. Kluwer Academic/Plenum Publishers, New York, pp 1–27

    Google Scholar 

  2. Sun SH, Murray CB, Weller D, Folks L, Moser A (2000) Science 287:1989–1992

    Article  CAS  Google Scholar 

  3. Portet D, Denizot B, Rump E, Lejeune JJ, Jallet P (2001) J Colloid Interface Sci 238:37–42

    Article  CAS  Google Scholar 

  4. Roullin VG, Deverre JR, Lemaire L, Hindre F, Julienne MCV, Vienet R, Benoit JP (2002) Eur J Pharm Biopharm 53:293–299

    Article  CAS  Google Scholar 

  5. Ajayan PM, Schadler LS, Braun PV (2003) Nanocomposite science and technology. WILEY-VCH, Weinheim

    Google Scholar 

  6. Katz E, Shipway AN, Willner I (2004) Biomaterial-nanoparticle hybrid systems - synthesis, properties, and applications. In: Schmid G (ed) Nanoparticles - from theory to application. WILEY-VCH, Weinheim, pp 368–421

    Google Scholar 

  7. Pasquato L, Pengo P, Scrimin P (2004) Biological and biomimetic applications of nanoparticles. In: Rotello V (ed) Nanoparticles - building blocks for nanotechnology. Kluwer Academic, New York, pp 251–282

    Google Scholar 

  8. Kuhara M, Takeyama H, Tanaka T, Matsunaga T (2004) Anal Chem 76:6207–6213

    Article  CAS  Google Scholar 

  9. Yoza B, Arakaki A, Maruyama K, Takeyama H, Matsunaga T (2003) J Biosci Bioeng 95:21–26

    CAS  Google Scholar 

  10. Plank C, Schillinger U, Scherer F, Bergemann C, Remy JS, Krotz F, Anton M, Lausier J, Rosenecker (2003) J Biol Chem 384:737–747

    Article  CAS  Google Scholar 

  11. Lazaro FJ, Abadia AR, Romero MS, Gutierrez L, Lazaro J, Morales MP (2005) Biochim Biophys Acta 1740:434–45

    CAS  Google Scholar 

  12. Gleich B, Weizenecker J (2005) Nature 435:1214–1217

    Article  CAS  Google Scholar 

  13. Pardoe H, Clark PR, St Pierre TG, Moroz P, Jones SK (2003) Magn Reson Imaging 21:483–488

    Article  CAS  Google Scholar 

  14. Matsunaga T, Kawasaki M, Yu X, Tsujimura N, Nakamura N (1996) Anal Chem 68:3551–3554

    Article  CAS  Google Scholar 

  15. Tanaka T, Matsunaga T (2000) Anal Chem 72:3518–3522

    Article  CAS  Google Scholar 

  16. Chemla YR, Grossman HL, Poon Y, McDermott R, Stevens R, Alper MD, Clarke J (2000) Proc Natl Acad Sci USA 97:14268–14272

    Article  CAS  Google Scholar 

  17. Tanaka T, Takeda H, Ueki F, Obata K, Tajima H, Takeyama H, Goda Y, Fujimoto S, Matsunaga T (2004) J Biotechnol 108:153–159

    Article  CAS  Google Scholar 

  18. Takeyama H, Tuzuki H, Chow S, Nakayama H, Matsunaga T (2000) Mar Biotechnol 2:309–313

    CAS  Google Scholar 

  19. Matsunaga T, Nakayama H, Okochi M, Takeyama H (2001) Biotechnol Bioeng 73:400–405

    Article  CAS  Google Scholar 

  20. Maruyama K, Takeyama H, Nemoto E, Tanaka T, Yoda K, Matsunaga T (2004) Biotechnol Bioeng 87:687–694

    Article  CAS  Google Scholar 

  21. Akutsu J, Tojo Y, Segawa O, Obata K, Okochi M, Tajima H, Yohda M (2004) Biotechnol Bioeng 86:667–671

    Article  CAS  Google Scholar 

  22. Ganguli D, Ganguli M (2003) Inorganic particle synthesis via macro- and microemulsions. Kluwer Academic, New York

    Google Scholar 

  23. Gobe M, Kon-no K, Kandori K, Kitahara K (1983) J Colloid Interface Sci 93:293–295

    Article  CAS  Google Scholar 

  24. Lee KM, Sorensen CM, Klabunde KJ, Hadjipanayis GC (1992) IEEE Trans Magn 28:3180–3182

    Article  CAS  Google Scholar 

  25. López-Quintela MA, Rivas J (1993) J Colloid Interface Sci 158:446–451

    Article  Google Scholar 

  26. López Pérez JA, López Quintela MA, Mira J, Rivas J, Cherles SW (1997) J Phys Chem B 101:8045–8047

    Article  Google Scholar 

  27. Hirai T, Mizumoto J, Shiojiri S, Komasawa I (1997) J Chem Eng Jpn 30:938–943

    Article  CAS  Google Scholar 

  28. Dickson DPE (1999) J Magn Magn Mater 203:46–49

    Article  CAS  Google Scholar 

  29. Blakemore RP (1975) Science 190:377–379

    Article  CAS  Google Scholar 

  30. Sakaguchi T, Burgess JG, Matsunaga T (1993) Nature 365:47–49

    Article  CAS  Google Scholar 

  31. Matsunaga T, Takeyama H (1998) Supramolecular Sci 5:391–394

    Article  CAS  Google Scholar 

  32. Cao X, Prozorov R, Koltypin Y, Kataby G, Felner I, Gedanken A (1997) J Mater Res 12:402–406

    CAS  Google Scholar 

  33. Shafi KVPM, Ulman A, Yan X, Yang NL, Estournes C, White H, Rafailovich M (2001) Langmuir 17:5093–5097

    Article  CAS  Google Scholar 

  34. Rockenberger J, Scher EC, Alivisatos AP (1999) J Am Chem Soc 121:11595–11596

    Article  CAS  Google Scholar 

  35. Sun S, Zeng H (2002) J Am Chem Soc 124:8204–8205

    Article  CAS  Google Scholar 

  36. Hyeon T, Lee SS, Park J, Chung Y, Na HB (2001) J Am Chem Soc 123:12798–12801

    Article  CAS  Google Scholar 

  37. Hyeon T (2003) Chem Commun 927–934

    Article  Google Scholar 

  38. Nakanishi T, Iida H, Osaka T (2003) Chem Lett 32:1166–1167

    Article  CAS  Google Scholar 

  39. Iida H, Nakanishi T, Osaka T (2005) Electrochim Acta 51:855–859

    Article  CAS  Google Scholar 

  40. Mikhailik OM, Fedorenko OM, Mikhailova SS, Povstugar VI, Lyakhovich AM, Kurbatova GT, Shklpvskaya NI, Chuilko AA (1991) Colloids Surf 52:331–338

    Article  CAS  Google Scholar 

  41. Xu Z, Liu Q, Finch JA (1997) Appl Surf Sci 120:269–278

    Article  CAS  Google Scholar 

  42. Ma M, Zhang Y, Yu W, Shen HY, Zhang HQ, Gu N (2003) Colloids Surf A 212:219–226

    Article  CAS  Google Scholar 

  43. Bruce IJ, Sen T (2005) Langmuir 21:7029–7035

    Article  CAS  Google Scholar 

  44. Schena M, Shalon D, Davis RW, Brown PO (1995) Science 270:467–470

    Article  CAS  Google Scholar 

  45. MacBeath G, Schreiber SL (2000) Science 289:1760–1763

    CAS  Google Scholar 

  46. Wilson DS, Nock S (2003) Angew Chem Int Ed 42:494–500

    Article  CAS  Google Scholar 

  47. Goldman ER, Clapp AR, Anderson GP, Uyeda HT, Mauro JM, Medintz IL, Mattoussi H (2004) Anal Chem 76:684–688

    Article  CAS  Google Scholar 

  48. Park SJ, Taton TA, Mirkin CH (2002) Science 295:1503–1506

    Article  CAS  Google Scholar 

  49. Reichert J, Csáki A, Köhler JM, Fritzsche W (2000) Anal Chem 72:6025–6029

    Article  CAS  Google Scholar 

  50. Amemiya Y, Tanaka T, Takeyama H, Matsunaga T (2005) J Biotechnol (in press)

  51. Baselt R, Lee GU, Natesan M, Metzger SW, Sheehan PE, Colton RJ (1998) Biosens Bioelectron 13:731–739

    Article  CAS  Google Scholar 

  52. Richardson J, Hill A, Luxton R, Hawkins P (2001) Biosens Bioelectron 16:1127–1132

    Article  CAS  Google Scholar 

  53. Edelstein RL, Tamanaha CR, Sheehan PE, Miller MM, Baselt DR, Whitman LJ, Colton RJ (2000) Biosens Bioelectron 14:805–813

    Article  CAS  Google Scholar 

  54. Nakanishi T, Yamakawa N, Asahi T, Osaka T, Ohtani B, Uosaki K (2002) J Am Chem Soc 124:740–741

    Article  CAS  Google Scholar 

  55. Nakanishi T, Yamakawa N, Asahi T, Shibata N, Ohtani B, Osaka T (2004) Chiraity 16:S36–S39

    Article  CAS  Google Scholar 

  56. Banno N, Nakanishi T, Matsunaga M, Asahi T, Osaka T (2004) J Am Chem Soc 126:428–429

    Article  CAS  Google Scholar 

  57. Houseman BT, Huh JH, Kron SJ, Mrksich M (2002) Nat Biotech 20:270–274

    Article  CAS  Google Scholar 

  58. Niwa D, Yamada Y, Homma T, Osaka T (2004) J Phys Chem B 108:3240–3245

    Article  CAS  Google Scholar 

  59. Niwa D, Omichi K, Motohashi N, Homma T, Osaka T (2004) Chem Lett 33:176–177

    Article  CAS  Google Scholar 

  60. Arakaki A, Hideshima S, Nakagawa T, Niwa D, Tanaka T, Matsunaga T, Osaka T (2004) Biotech Bioeng 88:543–546

    Article  CAS  Google Scholar 

  61. Wasserman SR, Tao YT, Whitesides GM (1989) Langmuir 5:1074–1087

    Article  CAS  Google Scholar 

  62. Frutos AG, Smith LM, Corn RM (1998) J Am Chem Soc 120:10277–10282

    Article  CAS  Google Scholar 

  63. Lamture JB, Beattie KL, Burke BE, Eggers MD, Ehrlich DJ, Fowler R, Hollis MA, Kosicki BB, Reich RK, Smith SR, Varma RS, Hogen ME (1994) Nucleic Acids Res 22:2121–2125

    Article  CAS  Google Scholar 

  64. Souteyrand E, Cloarec JP, Martin JR, Wilson C, Lawrence I, Mikkelsen S, Lawrence MF (1997) J Phys Chem B 101:2980–2985

    Article  CAS  Google Scholar 

  65. Renault JP, Bernard A, Juncker D, Michel B, Bosshard HR, Delamarche E (2002) Angew Chem Int Ed 41:2320–2323

    Article  CAS  Google Scholar 

  66. Odom TW, Thalladi VR, Love JC, Whitesides GM (2002) J Am Chem Soc 124:12112–12113

    Article  CAS  Google Scholar 

  67. Okamoto T, Suzuki T, Yamamoto N (2000) Nat Biotechnol 18:438–441

    Article  CAS  Google Scholar 

  68. Demers LM, Ginger DS, Park SJ, Li Z, Chung SW, Mirkin CA (2002) Science 296:1836–1838

    Article  CAS  Google Scholar 

  69. Bruckbauer A, Zhou D, Ying L, Korchev YE, Abell C, Klenerman D (2003) J Am Chem Soc 125:9834–9839

    Article  CAS  Google Scholar 

  70. Schoenmaker J, Lancarotte MS, Seabra AC, Souche Y, Santos AD (2004) J Microscopy 214:22–26

    Article  CAS  Google Scholar 

  71. Wioland H, Bergossi O, Hudlet S, Mackay K, Royer P (1999) Eur Phys J Appl Phys 5:289–295

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support provided by Grants-in-Aid from COE Research (Molecular Nano-Engineering), Encouraging Development Strategic Research Centers Program, Special Coordination Funds for Promoting Science and Technology (Establishment of Consolidated Research Institute for Advanced Science and Medical Care), and the 21st Century COE Program (Center for Practical Nano-Chemistry) of the Ministry of Education, Culture, Sports, Science and Technology, Japan. The authors would like to acknowledge Dr. Y. Okinaka for valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuya Osaka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Osaka, T., Matsunaga, T., Nakanishi, T. et al. Synthesis of magnetic nanoparticles and their application to bioassays. Anal Bioanal Chem 384, 593–600 (2006). https://doi.org/10.1007/s00216-005-0255-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-005-0255-7

Keywords

Navigation