Skip to main content
Log in

Molecularly imprinted polymers applied to the clean-up of zearalenone and α-zearalenol from cereal and swine feed sample extracts

  • Special Issue Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A molecularly imprinted polymer prepared using 1-allylpiperazine (1-ALPP) as the functional monomer, trimethyltrimethacrylate (TRIM) as the crosslinker and the zearalenone (ZON)-mimicking template cyclododecanyl-2,4-dihydroxybenzoate (CDHB) has been applied to the clean-up and preconcentration of this mycotoxin (zearalenone) and a related metabolite, α-zearalenol (α-ZOL), from cereal and swine feed sample extracts. The extraction of ZON and α-ZOL from the food samples was accomplished using pressurized liquid extraction (PLE) with MeOH/ACN (50:50, v/v) as the extraction solvent, at 50 °C and 1500 psi. The extracted samples were cleaned up and preconcentrated through the MIP cartridge and analyzed using HPLC with fluorescence detection (λ exc=271/ λ em=452 nm). The stationary phase was a polar endcapped C18 column, and ACN/MeOH/water 10/55/35 (v/v/v, 15 mM ammonium acetate) at a flow rate of 1.0 mL min−1 was used as the mobile phase. The method was applied to the analysis of ZON and α-ZOL in wheat, corn, barley, rye, rice and swine feed samples fortified with 50, 100 and 400 ng g−1 of both mycotoxins, and it gave recoveries of between 85 and 97% (RSD 2.1–6.7%, n=3) and 87–97% (RSD 2.3–5.6%, n=3) for α-ZOL and ZON, respectively. The method was validated using a corn reference material for ZON.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Abdulkadar AHW, Al-Ali AA, Al-Kildi AM, Al-Jedah JH (2004) Food Control 15:543–548

    Article  CAS  Google Scholar 

  2. Betina V (1989) Bioactive molecules. Mycotoxins. Elsevier, Amsterdam 9:271

  3. Richardson KE, Hagler WM, Mirocha CJ (1985) J Agric Food Chem 33:862–866

    Google Scholar 

  4. Liu MT, Ram BP, Hart LP, Pestka JJ (1985) Appl Environ Microbiol 50:332–336

    CAS  Google Scholar 

  5. Diekman MA, Green ML (1992) J Anim Sci 70:1615–1627

    CAS  Google Scholar 

  6. De Saeger S, Sibanda L, Van Peteghem C (2003) Anal Chim Acta 487:137–143

    Article  CAS  Google Scholar 

  7. Minervini F, Dell’Aquila M E, Maritato F, Minoia P, Visconti A (2001) Toxicol In Vitro 15:489–495

    Article  CAS  Google Scholar 

  8. Krska R, Josephs R (2001) Fresenius J Anal Chem 369:469–476

    Article  CAS  Google Scholar 

  9. Kruger SC, Kohn B, Ramsey CS, Prioli R (1999) J AOAC Int 82:1364–1368

    CAS  Google Scholar 

  10. Visconti A, Pascale M (1998) J Chromatogr A 815:133–140

    Article  CAS  Google Scholar 

  11. EC (2005) Commission Regulation (EC) No 856/2005 amending Regulation (EC) No 466/2001 as regards Fusarium toxins. European Communities, Brussels

  12. EC (2005) Commission Directive 2005/38/EC, laying down the sampling methods and the methods of analysis for the official control of the levels of Fusarium toxins in foodstuffs. European Communities, Brussels

  13. Swanson SP, Corley RA, White DG, Buck WB (1984) J Assoc Off Ana Chem 67:580–582

    CAS  Google Scholar 

  14. Tanaka T, Yoneda A, Inoue S, Sugiura Y, Ueno Y (2000) J Chromatogr A 882:23–28

    Article  CAS  Google Scholar 

  15. Silva CMG, Vargas EA (2001) Food Addit Contam 18:39–45

    Article  CAS  Google Scholar 

  16. Radová Z, Hajslová J, Králová J, Papousková L, Sýkorová S (2001) Cereal Res Commun 29:435–442

    Google Scholar 

  17. Rhyn P, Zoller O (2003) Eur Food Res Technol 216:319–322

    CAS  Google Scholar 

  18. Mateo JJ, Mateo R, Hinojo MJ, Llorens A, Jiménez M (2002) J Chromatogr A 955:245–256

    Article  CAS  Google Scholar 

  19. Pallaroni L, von Holst Ch (2003) J Chromatogr A 993:39–45

    Article  CAS  Google Scholar 

  20. Jodlbauer J, Zöllner P, Lindner W (2000) Chromatographia 51:681–687

    Article  CAS  Google Scholar 

  21. Zöllner P, Berner D, Jodlbauer J, Linder W (2000) J Chromatogr B 738(2):233–241

    Google Scholar 

  22. Abouzied MM, Pestka JJ (1994) J AOAC Int 77:495–501

    CAS  Google Scholar 

  23. Lee MG, Yuan QP, Harlt LP, Pestka JJ (2001) In: Trucksess MW, Pohland AE (eds) Methods in molecular biology. Humana, Totowa, NJ, p 159

  24. Urraca JL, Benito-Peña E, Pérez-Conde C, Pestka JJ, Moreno-Bondi MC (2005) J Agric Food Chem 53:3338–3344

    Article  CAS  Google Scholar 

  25. AOAC (1998) Official methods of analysis, 16th edn. Method 985.18. Association of Official Analytical Chemists, Gaithersburg, MD

  26. Pallaroni L, von Holst Ch (2003) Anal Bioanal Chem 376:908–912

    Article  CAS  Google Scholar 

  27. Pallaroni L, von Holst Ch (2004) J Chromatogr A 1055:247–249

    Article  CAS  Google Scholar 

  28. Urraca JL, Marazuela MD, Moreno-Bondi MC (2004) Anal Chim Acta 524:175–183

    Article  CAS  Google Scholar 

  29. Schuhmacher R, Krska R, Grasserbauer M, Edinger W, Lew H (1998) Fresenius J Anal Chem 360:241–245

    Article  CAS  Google Scholar 

  30. Llorens A, Mateo R, Mateo JJ, Jiménez M (2002) Food Addit Contam 19:272–281

    Article  CAS  Google Scholar 

  31. Ensing K, Berggren Ch, Majors RE (2002) LC GC Eur January, pp 2–8

  32. Kandimalla VB, Hunagxian J (2004) Anal Bioanal Chem 380:587–605

    Article  CAS  Google Scholar 

  33. Mayes AG, Whitcombe MJ (2005) Adv Drug Deliv Rev 57(12):1742–1778

    Article  CAS  Google Scholar 

  34. Haupt K (2003) Anal Chem 17:377A–383A

    Google Scholar 

  35. Weiss R, Freudenchuss M, Krska R, Mizaikoff B (2003) Food Addit Contam 20:386

    Google Scholar 

  36. Krska R, Welzig E, Berthiller F, Molinelli A (2005) Food Addit Contam 22:345–353

    CAS  Google Scholar 

  37. Josephs R, Krska R (2000) Mycotox Res 16A:217–220

    Article  Google Scholar 

Download references

Acknowledgements

This work has been funded by the Spanish Ministry of Education and Science (Project No. BQU2002-04515-C02). MDM and JUP thank to the Spanish Ministry of Science and Technology for a Ramón y Cajal contract and a pre-doctoral grant, respectively. The authors gratefully acknowledge E. Merino and Prof. Orellana for CHDB synthesis and Dr. Krska from the Institute for Agrobiotechnology (IFA-Tulln, Austria) for providing the corn reference material for validation purposes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María C. Moreno-Bondi.

Electronic supplementary material

Below are the images to the supplementary material.

Figure S1

Chromatograms of a corn PLE-extract (5 g corn spiked with 100 ng g-1 of ZON and α-ZOL): (a) without and (b) with a clean-up on the CDHB-MIP. Chromatographic conditions: see Section 2 (PDF 51kb)

Figure S2

Chromatograms of a swine feed PLE-extract (5 g swine feed spiked with 100 ng g-1 of ZON and α-ZOL): (a) without and (b) with a clean-up on the CDHB-MIP. Chromatographic conditions: see Section 2 (PDF 25kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Urraca, J.L., Marazuela, M.D. & Moreno-Bondi, M.C. Molecularly imprinted polymers applied to the clean-up of zearalenone and α-zearalenol from cereal and swine feed sample extracts. Anal Bioanal Chem 385, 1155–1161 (2006). https://doi.org/10.1007/s00216-006-0343-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-006-0343-3

Keywords

Navigation