Skip to main content
Log in

Determination of antimicrobial residues and metabolites in the aquatic environment by liquid chromatography tandem mass spectrometry

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Antimicrobials are used in large quantities in human and veterinary medicine. Their environmental occurrence is of particular concern due to the potential spread and maintenance of bacterial resistance. After intake by the organisms, the unchanged drug and its metabolized forms are excreted and enter wastewater treatment plants where they are mostly incompletely eliminated, and are therefore eventually released into the aquatic environment. The reliable detection of several antimicrobials in different environmental aqueous compartments is the result of great improvements achieved in analytical chemistry. This article provides an overview of the more outstanding analytical methods based on liquid chromatography tandem mass spectrometry, developed and applied to determine antimicrobial residues and metabolites present in surface, waste, and ground waters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Halling-Sorensen B, Nors Nielsen S, Lanzky PF, Ingerslev F, Holten Lützhoft HC, Jorgensen SE (1998) Chemosphere 36:357–393

    Article  PubMed  CAS  Google Scholar 

  2. Chee-Sanford JC, Aminov RI, Krapac IJ, Garrigues-Jeanjean N, Mackie RI (2001) Appl Environ Microbiol 67:1494–1502

    Article  PubMed  CAS  Google Scholar 

  3. Guardabassi L, Petersen A, Olsen JE, Dalsgaard A (1998) Appl Environ Microbiol 64:3499–3508

    PubMed  CAS  Google Scholar 

  4. Goñi-Urriza M, Capdepuy M, Arpin C, Raymond N, Caumette P, Quentin P (2000) Appl Environ Microbiol 66:125–132

    Article  PubMed  Google Scholar 

  5. Haller MY, Müller SR, McArdell CS, Alder AC, Suter MJF (2002) J Chromatogr A 952:11–120

    Article  Google Scholar 

  6. Wollenberger L, Halling-Sorensen B, Kusk KO (2000) Chemosphere 40:723–730

    Article  PubMed  CAS  Google Scholar 

  7. Kay P, Blackwell PA, Boxall ABA (2005) Chemosphere 59:951–959

    Article  PubMed  CAS  Google Scholar 

  8. Capone DG, Weston DP, Miller J, Shoemaker C (1996) 145:55–75

  9. Baticados MCL, Paclibare JO (1992) The use of chemoterapheutic agents in aquaculture in the Philippines. In: Shariff M, Subasinghe RP, Arthur JP (eds) Diseases in Asian aquaculture I, Manila, Philippines. Fish Health Section, Asian Fishery Society, pp 531–546

  10. Kümerer K (2001) Chemosphere 45:957–969

    Article  Google Scholar 

  11. Mellon M, Benbrook C, Benbrook KL (2001) - http://www.ucsusa.org/publications

  12. Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, Buxton HT (2002) Environ Sci Technol 36:1202–1211

    Article  PubMed  CAS  Google Scholar 

  13. Yang S, Carlson KH (2004) J Chromatogr A 1038:141–155

    Article  PubMed  CAS  Google Scholar 

  14. Díaz-Cruz MS, Barceló D (2005) Trends Anal Chem 24:645–657

    Article  CAS  Google Scholar 

  15. Petrovic M, Hernando MD, Díaz-Cruz MS, Barceló D (2005) J Chromatogr A 1067:1–14

    Article  PubMed  CAS  Google Scholar 

  16. Oka H, Matsumoto H (2000) J Chromatogr A 882:109–133

    Article  PubMed  CAS  Google Scholar 

  17. Thiele-Bruhn S (2003) J Plant Nutr Soil Sci 166:145–167

    Article  CAS  Google Scholar 

  18. Berger K, Petersen B, Büning-Pfaue H (1986) Arch Lebensmittelhyg 37:85–108

    Google Scholar 

  19. Vree TB, Hekster YA (1985) Pharmacokinetics of sulfonamides revisited, vol 34. Carger, Basel, New York

    Google Scholar 

  20. Gobel A, McArdell CS, Suter MJS, Giger W (2004) Anal Chem 76:4756–4764

    Article  PubMed  CAS  Google Scholar 

  21. Hilton MJ, Thomas KV (2003) J Chromatogr A 1015:129–141

    Article  PubMed  CAS  Google Scholar 

  22. Hirsch R, Ternes TA, Haberer K, Kratz KL (1999) Sci Tot Environ 225:109–118

    Article  CAS  Google Scholar 

  23. Halling-Sorensen B, Sengelov G, Tjornelund J (2002) Arch Environ Contam Toxicol 42:263–271

    Article  PubMed  CAS  Google Scholar 

  24. Castiglioni S, Bagnati R, Fanelli R, Pomati F, Calamari D, Zuccato E (2006) Environ Sci Technol 40:357–363

    Article  PubMed  CAS  Google Scholar 

  25. Ternes T, Bonerz M, Schmidt T (2001) J Chromatogr A 938:175–185

    Article  PubMed  CAS  Google Scholar 

  26. Giger W, Alder AC, Golet EM, Kohler HPE, McArdell CS, Molnar E, Siegrist H, Suter MJF (2003) Environ Anal CHIMIA 57:485–491

    CAS  Google Scholar 

  27. Daughton CG, Ternes TA (1999) Environ Health Perspect 107:907–938

    Article  PubMed  CAS  Google Scholar 

  28. Yang S, Cha JM, Carlson KH (2005) J Chromatogr A 1097:40–53

    Article  PubMed  CAS  Google Scholar 

  29. Golet EM, Xifra I, Siegrist H, Alder AC, Giger W (2003) Environ Sci Technol 37:3243–3249

    Article  PubMed  CAS  Google Scholar 

  30. Bendz D, Paxéus NA, Ginn TR, Loge FJ (2005) J Hazard Mat 122:195–204

    Article  CAS  Google Scholar 

  31. Tolls J (2001) Environ Sci Technol 35:3397–3406

    Article  PubMed  CAS  Google Scholar 

  32. Carballa M, Omil F, Lema JM, Llompart M, García-Jares C, Rodríguez I, Gómez M, Ternes TA (2004) Water Res 38:2918–2926

    Article  PubMed  CAS  Google Scholar 

  33. Miao XS, Bishay F, Chen M, Metcalfe CD (2004) Environ Sci Technol 38:3533–3541

    Article  PubMed  CAS  Google Scholar 

  34. Wiegel S, Aulinger A, Brockmeyer R, Harás H, Löffler J, Reincke H, Schmidt R, Stachel B, von Tümpling W, Wanke A (2004) Chemosphere 57:107–126

    Article  PubMed  CAS  Google Scholar 

  35. Lindberg RH, Wennberg P, Johansson MI, Tysklind M, Andersson BAV (2005) Environ Sci Technol 39:3421–3429

    Article  PubMed  CAS  Google Scholar 

  36. Löffler D, Ternes TA (2003) 1000:583–588

  37. Pozo, OJ, Guerrero C, Sancho JV, Ibáñez M, Pitarch E, Hogendoorn E, Hernández F (2006) J Chromatogr A 1103:83–93

    Article  PubMed  CAS  Google Scholar 

  38. Cha JM, Yang S, Carlson KH (2005) J Chromatogr A 1065:187–198

    Article  PubMed  CAS  Google Scholar 

  39. Ternes T (2001) Trends Anal Chem 20:419–434

    Article  CAS  Google Scholar 

  40. Yang S, Cha JM, Carlson KH (2004) Rapid Commun Mass Spectrom 18:2131–2145

    Article  PubMed  CAS  Google Scholar 

  41. Jacobsen MA, Halling-Sorensen B, Ingerslev SH, Hansen J (2004) J Chromatogr A 1038:157–170

    Article  PubMed  CAS  Google Scholar 

  42. Naidong W, Roets E, Busson R, Hoogmartens J (1990) J Pharm Biomed Anal 8:881–889

    Article  CAS  Google Scholar 

  43. Bryan PD, Hawkins KR, Stewart JT, Capomacchia AC (1992) Biomed Chromatogr 6:305–310

    Article  PubMed  CAS  Google Scholar 

  44. Hamscher G, Sczesny S, Hoper H, Nau H (2002) Anal Chem 74:1509–1518

    Article  PubMed  CAS  Google Scholar 

  45. Soeborg T, Ingerslev F, Halling-Sorensen B (2004) Chemosphere 57:1551–1524

    Article  CAS  Google Scholar 

  46. Hartig C, Store T, Jekel M (1999) J Chromatogr A 854:163–173

    Article  PubMed  CAS  Google Scholar 

  47. Zhou S, Hamburger M (1995) Rapid Commun Mass Spectrom 9:1516–1521

    Article  CAS  Google Scholar 

  48. Zhou S, Hamburger M (1996) J Chromatogr A 755:189–204

    Article  CAS  Google Scholar 

  49. Hager JW (2004) Anal Bioanal Chem 378:845–850

    Article  PubMed  CAS  Google Scholar 

  50. Ibáñez M, Sancho JV, Pozo OJ, Niessen W, Hernández F (2005) Rapid Commun Mass Spectrom 19:169–178

    Article  PubMed  CAS  Google Scholar 

  51. Stolker AAM, Niesing W, Fuchs W, Vreeken RJ, Niessen WMA, Brinkman UATH (2004) Anal Bioanal Chem 378:1754–1761

    Article  PubMed  CAS  Google Scholar 

  52. Hager JW, Le Blanc JCY (2003) J Chromatogr A 1020:3–9

    Article  PubMed  CAS  Google Scholar 

  53. Hager JW (2002) Rapid Commun Mass Spectrom 16:512–526

    Article  CAS  Google Scholar 

  54. Raffaelli A, Saba A (2003) Mass Spectrom Rev 22:318–331

    Article  PubMed  CAS  Google Scholar 

  55. Hanold KA, Fisher SM, Cormia PH, Miller E, Syage JA (2004) Anal Chem 76:2842–2851

    Article  PubMed  CAS  Google Scholar 

  56. Takino M, Daishima S, Nakahara (2003) J Chromatogr A 1011:67–75

    Article  PubMed  CAS  Google Scholar 

  57. Hirsch R, Ternes TA, Haberer K, Mehlich A, Ballwanz F, Kratz KL (1998) J Chromatogr A 815:213–223

    Article  PubMed  CAS  Google Scholar 

  58. Miao XS, Metcalfe CD (2003) J Mass Spectrom 38:27–34

    Article  PubMed  CAS  Google Scholar 

  59. Kamel AM, Fonda HG, Brown PR, Munson B (2002) J Am Soc Mass Spectrom 13:543–557

    Article  PubMed  CAS  Google Scholar 

  60. Zhu J, Show DD, Cassada DA, Monson SJ, Spalding RF (2001) J Chromatogr A 928:177–186

    Article  PubMed  CAS  Google Scholar 

  61. Halling-Sorensen B, Lykkeberg A, Ingerslev F, Blackwell P, Tjornelund J (2003) Chemosphere 50:1331–1342

    Article  PubMed  CAS  Google Scholar 

  62. Sacher F, Lange FT, Brauch HJ, Blankenhorn I (2001) J Chromatogr A 938:199–210

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work has been funded by the EU Framework VI Programme (Project NOMIRACLE, Co.No: 003956-2), and by the Spanish Ministry of Science and Technology (Project EVITA, CTM2004-06265-CO3-01/TECNO). M.S. Díaz-Cruz acknowledges her Ramon y Cajal contract from the Spanish Ministry of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Silvia Díaz-Cruz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Díaz-Cruz, M.S., Barceló, D. Determination of antimicrobial residues and metabolites in the aquatic environment by liquid chromatography tandem mass spectrometry. Anal Bioanal Chem 386, 973–985 (2006). https://doi.org/10.1007/s00216-006-0444-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-006-0444-z

Keywords

Navigation