Skip to main content
Log in

Quantification of human and veterinary antibiotics in water and sediment using SPE/LC/MS/MS

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

An analytical method was developed and tested for four different groups of veterinary antibiotics in both river water and sediment matrices. Solid phase extraction (SPE) was used to enrich and to clean up the aqueous sample. Also, Mcllvaine and ammonium hydroxide buffer solutions were used to extract the compounds from the sediment matrix. High performance liquid chromatography (HPLC) equipped with tandem mass spectrometry (MS/MS) was used to separate and quantify the samples. The range of recoveries (in percent) for tetracyclines (TCs), sulfonamides (SAs), macrolides (MLs), and ionophore polyethers (IPs) in the water matrix were 102.2–124.8, 76.6–124.3, 89.5–114.7, 82.7–117.5 with 1–13 (%) of relative standard deviation respectively with three different concentrations. For sediment, the percent recovery ranges were 32.8–114.8, 62.4–108.9, 53.4–128.4 and 51.3–105.4 for TCs, SAs, MLs and IPs, respectively. The relative standard deviation ranged from 16 – 27 (%) over three different concentrations. The limit of quantification (LOQ) was determined by two different methods and calculated to be in the range of 0.01–0.04 μg/l and 0.3–2.5 μg/kg for TCs, SAs, and MLs in water and sediment, respectively. For IPs, the LOQ was 0.001–0.003 μg/l in river water and 0.4–3.6 μg/kg for sediment. The sediment concentration measured in an agriculture-influenced river was much higher than in the overlying water matrix, indicating a high degree of sediment partitioning for these compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bruhn ST (2003) J Plant Nutr Soil Sci 166:145–167

    Article  Google Scholar 

  2. Lock CM, Chen L, Volmer DA (1999) Rapid Commun Mass Spectrom 13:1744–1754

    Article  CAS  Google Scholar 

  3. Bruno F, Curini R, Corcia AD, Nazzari M, Pallagrosi M (2002) Rapid Commun Mass Spectrom 16:1365–1376

    Article  CAS  Google Scholar 

  4. Haller MY, Muller SR, McArdell CS, Alder AC, Suter MJ-F (2002) J Chromatogr A 952:111–120

    Google Scholar 

  5. McArdell CS, Molnar E, Suter MJF, Giger W (2003) Environ Sci Technol 37:5479–5486

    Article  CAS  Google Scholar 

  6. Volmer DA, Lock CM (1998) Rapid Commun Mass Spectrom 12:157–164

    Article  CAS  Google Scholar 

  7. Animal Health Industry Sales; Animal Health Institute (2002)

  8. Mellon M, Benbrook C, Benbrook KL (2001) Union of Concerned Scientists

  9. Diaz-Cruz MS, Alda MJL, Barcelo D (2003) Trends Anal Chem 22:340–351

    Article  CAS  Google Scholar 

  10. Hirsch R, Ternes T, Hanerer K, Kratz KL (1999) Sci Total Environ 225:109–118

    Article  CAS  Google Scholar 

  11. Hirsch R, Ternes TA, Haberer K, Mehlich A, Ballwanz F, Kratz KL (1998) J Chromatogr A 815:213–223

    Article  CAS  Google Scholar 

  12. Lindsey ME, Meyer M, Thurman EM (2001) Anal Chem 73:4640–4646

    Article  CAS  Google Scholar 

  13. Zhu J, Snow DD, Cassada DA, Monson SJ, Spalding RF (2001) J Chromatogr A 928:177–186

    Article  CAS  Google Scholar 

  14. Blackwell PA, Lutzhoft HH, Ma HP, Halling-Sorensen B, Boxwell ABA, Kay P (2004) Talanta 64:1058–1064

    Article  CAS  Google Scholar 

  15. Jacobsen AM, Halling-Sorensen B, Ingerslev F, Gansen SH (2004) J Chromatogr A 1038:157–170

    Article  CAS  Google Scholar 

  16. Jacobsen P, Bergland L (1987) Aquaculture 70:365–370

    Article  Google Scholar 

  17. Bjorklund H, Bondest J, Bylund G (1990) Aquaculture 86:359–367

    Article  CAS  Google Scholar 

  18. Cooper AD, Stubbings GWF, Kelly M, Tarbin JA, Farrington WHH, Shcarer G (1998) J Chromatogr A 812:321–326

    Article  CAS  Google Scholar 

  19. Hamscher G, Sczesny S, Hoper H, Nau H (2002) Anal Chem 74:1509–1518

    Article  CAS  Google Scholar 

  20. Schlusener MP, Bester K, Spiteller M (2003) Anal Bioanal Chem 375:942–947

    Google Scholar 

  21. Wang J (2004) J Agric Food Chem 52:171–181

    Article  CAS  Google Scholar 

  22. Loke ML, Jespersen S (2003) J Chromatogr B Analyt Technol Biomed Life Sci 783:11–23

    Article  Google Scholar 

  23. Delepee R, Maume D (2000) J Chromatogr B Analyt Technol Biomed Life Sci 748:369–381

    Article  CAS  Google Scholar 

  24. Vinas P, Balsalobre N, Erroz CL, Cordoba MH (2004) J Chromatogr A 1022:125–129

    Article  CAS  Google Scholar 

  25. Yang S, Carlson K (2004) J Chromatogr A 1038:141–155

    Article  CAS  Google Scholar 

  26. Liang Y, Denton MB, Bates RB (1998) J Chromatogr A 827:45–55

    Article  CAS  Google Scholar 

  27. Boxall ABA, Blackwell P, Cavallo R, Kay P, Tolls J (2002) Toxicol Lett 131:19–28

    Article  CAS  Google Scholar 

  28. Kim YH, Heinze TM, Kim SJ, Cerniglia CE (2004) J Environ Qual 33:257–264

    CAS  Google Scholar 

  29. Thiele-Bruhn S, Seibicke T, Schulten HR, Leinweber P (2004) J Environ Qual 33:1331–1342

    Article  CAS  Google Scholar 

  30. Figueroa RA, Leonard A, Mackay AA (2004) Environ Sci Technol 38:476–483

    Article  CAS  Google Scholar 

  31. Yang S, Cha J, Carlson KH (2004) Rapid Commun Mass Spectrom 18:2131–2145

    Article  CAS  Google Scholar 

  32. Cinquina AL, Longo F, Anastasi G, Giannetti L, Cozzani R (2003) J Chromatogr A 987:227–233

    Article  CAS  Google Scholar 

  33. USDA (2003) United States Department of Agriculture Food Safety and Inspection Service

  34. Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, Buxton HT (2002) Environ Sci Technol 36:1202–1211

    Article  CAS  Google Scholar 

  35. Halling-Sorensen B, Jacobsen AM, Jensen J, Sengelov G, Vaclavik E, Ingerslev F (2005) Environ Toxicol Chem 24:802–810

    Article  CAS  Google Scholar 

  36. Ferrer I, Furlong ET (2002) Anal Chem 74:1275–1280

    Article  CAS  Google Scholar 

  37. Halling-Sorensen B, Sengelov G, Tjornelund J (2002) Arch Environ Contam Toxicol 42:263–271

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the expertise and assistance of Donald Dick in the Department of Chemistry at Colorado State University. This project was funded by the USDA National Integrated Water Quality Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth Carlson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, SC., Carlson, K. Quantification of human and veterinary antibiotics in water and sediment using SPE/LC/MS/MS. Anal Bioanal Chem 387, 1301–1315 (2007). https://doi.org/10.1007/s00216-006-0613-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-006-0613-0

Keywords

Navigation