Skip to main content
Log in

Amperometric hydrogen peroxide sensor based on a sol-gel-derived ceramic carbon composite electrode with toluidine blue covalently immobilized using 3-aminopropyltrimethoxysilane

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A carbon composite amperometric hydrogen peroxide sensor has been developed using a sol-gel technique. Toluidine blue (TB), which acts as the redox mediator, was covalently immobilized via glutaraldehyde crosslinking with an organically modified silane, namely 3-aminopropyltrimethoxysilane (APTMOS). Methyltrimethoxysilane (MTMOS) was used as the additional monomer; this controls the hydrophobicity of the electrode surface, thus limiting the wettability. The immobilization of TB within the sol-gel matrix was confirmed with FTIR studies. The sol-gel mixture containing TB immobilized in APTMOS and MTMOS was mixed with graphite powder in order to prepare the carbon composite electrode. The electrode was characterized using voltammetric techniques and its electrocatalytic activity for the reduction of hydrogen peroxide was also studied. The carbon composite electrode has the advantage of sensing H2O2 at a lower potential and with a higher sensitivity, and interferences due to ascorbic acid, uric acid and acetaminophen were greatly minimized. The linear range for the determination of H2O2 extends from 5.37 × 10−6 to 6.15 × 10−3 M, with a correlation coefficient of 0.9981. The detection limit was found to be 2.15 × 10−6 M. The covalent immobilization of TB effectively prevents the leakage of the water-soluble mediator during measurements. The modified electrode, aside from electrocatalyzing the reduction of H2O2, exhibits distinct advantages in terms of surface renewal in the event of surface fouling, as well as simple preparation, good chemical and mechanical stability, and good reproducibility.

Amperometric hydrogen peroxide sensor based on sol-gel-derived ceramic carbon composite electrode with toluidine blue covalently immobilized using 3-aminopropyltrimethoxysilane

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lobnik A, Cajlakovic M (2001) Sens Actuators B 74:194–199

    Article  Google Scholar 

  2. Westbroek P, Van Hayte B, Temmerman E (1996) Fresenius J Chem 354:405–409

    CAS  Google Scholar 

  3. Liu X, Xu Y, Ma X, Li G (2005) Sens Actuators B 106:284–288

    Article  Google Scholar 

  4. Hurdis EC, Romeyn H Jr (1954) Anal Chem 26:320–325

    Article  CAS  Google Scholar 

  5. Genfa Z, Dasgupta PK, Edgemond WS, Marx JN (1991) Anal Chim Acta 243:207–216

    Article  Google Scholar 

  6. Chai XS, Hou QX, Luo Q, Zhu JY (2004) Anal Chim Acta 507:281–284

    Article  CAS  Google Scholar 

  7. Rocha FRP, Torralba ER, Reis BF, Rubio AM, de la Guardia M (2005) Talanta 67:673–677

    Article  CAS  Google Scholar 

  8. Lin Y, Cui X, Li L (2005) Electrochem Commun 7:166–172

    Article  CAS  Google Scholar 

  9. Tseng KS, Chen LC, Ho KC (2005) Sens Actuators B 108:738–745

    Article  Google Scholar 

  10. Gorton L, Lindgren A, Larsson T, Munteanu FD, Ruzgas T, Gazaryan I (1999) Anal Chim Acta 400:91–108

    Article  CAS  Google Scholar 

  11. Ravi Shankaran D, Sriman Narayanan S (2002) Sens Actuators B 86:180–184

    Article  Google Scholar 

  12. Nalini B, Sriman Narayanan S (1998) Electroanalysis 10:779–783

    Article  CAS  Google Scholar 

  13. Deepa PN, Sriman Narayanan S (2001) Bull Electrochem 17:259–264

    CAS  Google Scholar 

  14. Walcarius A (1998) Electroanalysis 10:1217–1235

    Article  CAS  Google Scholar 

  15. Wang J (1999) Anal Chim Acta 399:21–27

    Article  CAS  Google Scholar 

  16. Tess ME, Cox JA (1999) J Pharm Biomed Anal 19:55–68

    Google Scholar 

  17. Lev O, Wu Z, Bharathi S, Glezer V, Modestov A, Gun J, Rabinovich L, Sampath S (1997) Chem Mater 9:2354–2375

    Article  CAS  Google Scholar 

  18. Alber KS, Cox JA (1997) Mikrochim Acta 127:131–147

    Article  CAS  Google Scholar 

  19. Collinson MM (1998) Mikrochim Acta 129:149–165

    Article  CAS  Google Scholar 

  20. Tsionsky M, Gun G, Glezer V, Lev O (1994) Anal Chem 66:1747–1753

    Article  CAS  Google Scholar 

  21. Pankratov I, Lev O (1995) J Electroanal Chem 393:35–41

    Article  Google Scholar 

  22. Lev O, Tsionsky M, Rabinovich L, Glezer V, Sampath S, Pankratov I, Gun J (1995) Anal Chem 67:22A–30A

    Article  CAS  Google Scholar 

  23. Wang J, Parsad VA, Park DS (1997) Electroanalysis 9:52–55

    Article  CAS  Google Scholar 

  24. Wang J, Pamidi VA, Park DS (1996) Anal Chem 68:2705–2708

    Article  CAS  Google Scholar 

  25. Gun J, Lev O (1996) Anal Chim Acta 336:95–106

    Article  CAS  Google Scholar 

  26. Yuan Y, Wang P, Zhu G (2002) Anal Bioanal Chem 372:712–717

    Article  CAS  Google Scholar 

  27. Munteanu FD, Okamoto Y, Gorton L (2003) Anal Chim Acta 476:43–54

    Article  CAS  Google Scholar 

  28. Chen Y, Yuan J, Tian C, Wang X (2004) Anal Sci 20:507–511

    Article  CAS  Google Scholar 

  29. Persson B (1990) J Electroanal Chem 287:61–80

    Article  CAS  Google Scholar 

  30. Ramesh R, Sampath S (2000) Anal Chem 72:3369–3373

    Article  CAS  Google Scholar 

  31. Santos AS, Pereira AC, Kubota LT (2002) J Braz Chem Soc 13:495–501

    CAS  Google Scholar 

  32. Sampath S, Lev O (1996) Anal Chem 68:2015–2021

    Article  CAS  Google Scholar 

  33. Katz E, Schlereth DD, Schmidt HL, Olsthoorn AJ (1994) J Electroanal Chem 368:165–171

    Article  CAS  Google Scholar 

  34. Liang R, Qiu J, Cai P (2005) Anal Chim Acta 534:223–229

    Article  CAS  Google Scholar 

  35. Taranekar P, Fan X, Advincula R (2002) Langmuir 18:7943–7952

    Article  CAS  Google Scholar 

  36. Laviron E (1979) J Electroanal Chem 101:19–28

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors thank the University Grants Commission (UGC) for its financial assistance through University With Potential For Excellence (UWPFE) Project and Department of Science and Technology, New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sriman Narayanan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

FTIR of (a) free toluidine blue and (b) toluidine blue immobilized in a sol-gel matrix (DOC 184 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thenmozhi, K., Sriman Narayanan, S. Amperometric hydrogen peroxide sensor based on a sol-gel-derived ceramic carbon composite electrode with toluidine blue covalently immobilized using 3-aminopropyltrimethoxysilane. Anal Bioanal Chem 387, 1075–1082 (2007). https://doi.org/10.1007/s00216-006-0992-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-006-0992-2

Keywords

Navigation