Skip to main content
Log in

Electrocatalytic determination of reduced glutathione in human erythrocytes

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The determination of reduced glutathione (GSH) in human erythrocytes using a simple, fast and sensitive method employing a glassy carbon electrode modified with cobalt tetrasulfonated phthalocyanine (CoTSPc) immobilized in poly(l-lysine) (PLL) film was investigated. This modified electrode showed very efficient electrocatalytic activity for anodic oxidation of GSH, decreasing substantially the anodic overpotentials for 0.2 V versus Ag/AgCl. The modified electrode presented better performance in 0.1 mol l−1 piperazine-N,N′-bis(2-ethanesulfonic acid) buffer at pH 7.4. The other experimental parameters, such as the concentration of CoTSPc and PLL in the membrane preparation, pH, type of buffer solution and applied potential, were optimized. Under optimized operational conditions, a linear response from 50 to 2,160 nmol l−1 was obtained with a high sensitivity of 1.5 nA l nmol−1 cm−2. The detection limit for GSH determination was 15 nmol l−1. The proposed sensor presented good repeatability, evaluated in terms of the relative standard deviation (1.5%) for n = 10. The modified electrode was applied for determination of GSH in erythrocyte samples and the results were in agreement with those obtained by a comparative method described in the literature The average recovery for these fortified samples was 100 ± 1)%. Applying a paired Student’s-t test to compare these methods, we could observe that, at the 95% confidence level, there was no statistical difference between the reference and the proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chen J, He Z, Liu H, Cha C (2006) J Electroanal Chem 588:324–330

    Article  CAS  Google Scholar 

  2. Griffith OW (1999) Free Radical Biol Med 27:922–935

    Article  CAS  Google Scholar 

  3. Droge D, Breitkreutz R (2000) Proc Nutr Soc 59:595–600

    CAS  Google Scholar 

  4. Cereser C, Guichard J, Drai J, Bannier E, Garcia I, Boget S, Parvaz P, Revol A (2001) J Chromatogr B 752:123–132

    CAS  Google Scholar 

  5. Zhang W, Wan F, Zhu W, Xu H, Ye X, Cheng R, Jin LT (2005) J Chromatogr B 818:227–232

    Article  CAS  Google Scholar 

  6. Shen Z, Wang H, Liang SC, Zhang ZM, Zhang HS (2002) Anal Lett 35:2269–2278

    Article  CAS  Google Scholar 

  7. Chen XP, Cross RF, Clark AG, Baker WL (1999) Mikrochim Acta 130:225–231

    Article  CAS  Google Scholar 

  8. Besada A, Tadros NB, Gawargious YA (1989) Mikrochim Acta 3:143–146

    Article  CAS  Google Scholar 

  9. Raggi MA, Nobile L, Giovannini AG (1991) J Pharm Biomed Anal 9:1037–1040

    Article  CAS  Google Scholar 

  10. Compagnone D, Massoud, R Di Ilio C, Federici G (1991) Anal Lett 24:993–1004

    CAS  Google Scholar 

  11. Chwatko G, Bold E (2000) Talanta 52:509–515

    Article  CAS  Google Scholar 

  12. Jin WR, Zhan X, Xian L (2000) Electroanalysis 12:858–862

    Article  CAS  Google Scholar 

  13. Ricci GF, Arduini F, Tuta CS, Sozzo U, Moscone D, Amine A, Palleschi G (2006) Anal Chim Acta 558:164–170

    Article  CAS  Google Scholar 

  14. Salimi A, Hallaj R (2005) Talanta 66:967–975

    Article  CAS  Google Scholar 

  15. Compagnone D, Federici G, Scarciglia L (1993) Biosens Biolelectron 8:257–263

    Article  CAS  Google Scholar 

  16. Compagnone D, Federici G, Scarciglia L, Palleschi G (1994) Anal Lett 27:15–27

    CAS  Google Scholar 

  17. Zhang S, Sun WL, Zhang W, Qi WY, Jin LT, Yamamoto K, Tao S, Jin JY (1999) Anal Chim Acta 386:21–30

    Article  CAS  Google Scholar 

  18. Salimi A, Pourbeyram S (2003) Talanta 60:205–214

    Article  CAS  Google Scholar 

  19. Calvo-Marzal P, Chumbimuni-Torres KY, Hoehr NF, Kubota LT (2006) Clin Chim Acta 371:152–158

    Article  CAS  Google Scholar 

  20. Filanovsky B (1999) Anal Chim Acta 394:91–100

    Article  CAS  Google Scholar 

  21. Guo YZ, Guadalupe AR (1998) Sens Actuators B 46:213–219

    Article  Google Scholar 

  22. Stephen AW, Stephen PH, John PH, Brian JB (1989) Analyst 114:1563–1570

    Article  Google Scholar 

  23. Griveau S, Gulppi M, Pavez J, Zagal JH, Bedioui F (2003) Electroanalysis 15:779–785

    Article  CAS  Google Scholar 

  24. Zagal JH, Gulppi M, Isaacs M, Cardenas-Jiron G, Aguirre MJ (1998) Electrochim Acta 44:1349–1357

    Article  CAS  Google Scholar 

  25. Griveau S, Pavez J, Zagal J, Bedioui F (2001) J Electroanal Chem 497:75–83

    Article  CAS  Google Scholar 

  26. Gulppi M, Griveau S, Bedioui F, Zagal J (2001) Electrochim Acta 46:3397–3404

    Article  CAS  Google Scholar 

  27. Griveau S, Albin V, Pauporte T, Zagal JH, Bedioui F (2002) J Mater Chem 12:225–232

    Article  CAS  Google Scholar 

  28. Anson FC, Ohsaka T, Saveant JM (1983) J Phys Chem 87:640–647

    Article  CAS  Google Scholar 

  29. Muthukuma M (2004) J Chem Phys 120:9343–9350

    Article  CAS  Google Scholar 

  30. Weber JH, Busch DH (1965) Inorg Chem 4:469–471

    Article  CAS  Google Scholar 

  31. Griffith OW (1980) Anal Biochem 106:207–212

    Article  CAS  Google Scholar 

  32. Premkumar J, Khoo SB (2005) J Electroanal Chem 576:105–111

    Article  CAS  Google Scholar 

  33. Anderson M (1985) Methods Enzymol 13:548–555

    Article  Google Scholar 

  34. Limson J, Nyokong T (1998) Electroanalysis 10:988–993

    Article  CAS  Google Scholar 

  35. Zagal J, Páez M, Tanaka AA, dos Santos JR Jr (1992) J Electroanal Chem 339:13–30

    Article  CAS  Google Scholar 

  36. Lever ABP, Milaeva ER, Speier G (1993) In: Lezniff CC, Lever ABP (eds) Phthalocyanine: properties and applications, vol 3. VCH, New York

    Google Scholar 

  37. Zagal JH (1992) Coord Chem Rev 119:89–136

    Article  CAS  Google Scholar 

  38. Gulppi MA, Páez MA, Costamagna JA, Cárdenas-Jirón G, Bedioui F, Zagal JH (2005) J Electroanal Chem 580:50–56

    CAS  Google Scholar 

  39. Saari NB, Fujita S, Miyazoe R, Okugawa M (1996) J Food Biochem 19:321–327

    CAS  Google Scholar 

  40. Fernandes JCB, Kubota LT, Neto GO (1999) Anal Chim Acta 385:3–12

    Article  CAS  Google Scholar 

  41. Rover L Jr, Kubota LT, Höehr NF (2001) Clin Chim Acta 308:55–67

    Article  CAS  Google Scholar 

  42. Sehlotho N, Nyokong T, Zagal JH, Bedioui F (2006) Electrochim Acta 51:5125–5130

    Article  CAS  Google Scholar 

  43. Salimi A, Pourbeyram S (2003) Talanta 60:205–214

    Article  CAS  Google Scholar 

  44. Inoue T, Kirchhoff JR (2000) Anal Chem 72:5755–5760

    Article  CAS  Google Scholar 

  45. Analytical Methods Committee (1987) Analyst 112:199–204

    Article  Google Scholar 

  46. Silva MLS, Garcia MBQ, Lima JLFC, Barrado E (2006) Anal Chim Acta 573–574:383–390

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lauro Tatsuo Kubota.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Cássia Silva Luz, R., Damos, F.S., Gandra, P.G. et al. Electrocatalytic determination of reduced glutathione in human erythrocytes. Anal Bioanal Chem 387, 1891–1897 (2007). https://doi.org/10.1007/s00216-006-1053-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-006-1053-6

Keywords

Navigation