Skip to main content
Log in

Capacitive biosensor for detection of endotoxin

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A capacitive biosensor for the detection of bacterial endotoxin has been developed. Endotoxin-neutralizing protein derived from American horseshoe crab was immobilized to a self-assembled thiol layer on a biosensor transducer (Au). Upon injection of a sample containing endotoxin, a decrease in the observed capacitive signal was registered. Endotoxin could be determined under optimum conditions with a detection limit of 1.0 × 10−13 M and linearity ranging from 1.0 × 10−13 to 1.0 × 10−10 M. Good agreement was achieved when applying endotoxin preparations purified from an Escherichia coli cultivation to the capacitive biosensor system, utilizing the conventional method for quantitative endotoxin determination, the Limulus amebocyte lysate test as a reference. The capacitive biosensor method was statistically tested with the Wilcoxon signed rank test, which proved the system is acceptable for the quantitative analysis of bacterial endotoxin (P < 0.05).

The flow-injection capacitive biosensor system and the capacitive properties of the transducer surface, where CSAM is the capacitance change of the self-assembled thiol monolayer, CP is the capacitance change of the protein layer, Ca is the capacitance change of the analyte layer and CTotal is the total capacitance change measured at the working electrode/solution interface (modified from Limbut et al., 2006. Biosens Bioelectron 22: 233-240)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. McCuskey RS, Urbaschek R, Urbaschek B (1996) Cardiovasc Res 32:752–763

    Article  CAS  Google Scholar 

  2. Morrison DC, Ulevitch RJ (1978) Am J Pathol 93:527–617

    Google Scholar 

  3. Karima R, Matsumoto S, Higashi H, Matsushima K (1999) Mol Med Today 5:123–132

    Article  CAS  Google Scholar 

  4. Carcillo JA, Cunnion RE (1997) Crit Care Clin 13:553–574

    Article  CAS  Google Scholar 

  5. Petsch D, Anspach FB (2000) J Biotechnol 76:97–119

    Article  CAS  Google Scholar 

  6. Sharon N, Lis H (1972) Science 177:949–959

    Article  CAS  Google Scholar 

  7. Aketagawa J, Miyata T, Nakamura T, Iwanaga S (1986) J Biol Chem 261:7357–7365

    CAS  Google Scholar 

  8. Mattiasson B (1984) Trends Anal Chem 3:245–250

    Article  CAS  Google Scholar 

  9. Taylor RF (1991) In: Taylor RF (ed) Protein immobilization; fundamentals and applications. Dekker, New York, pp 263–303

    Google Scholar 

  10. Tang D, Yuan R, Chai Y, Dai J, Zhong X, Liu Y (2004) Bioelectrochemistry 65:15–22

    Article  CAS  Google Scholar 

  11. Taylor RF, Marenchic IG, Spencer RH (1991) Anal Chim Acta 249:67–90

    Article  CAS  Google Scholar 

  12. Ramanaviciene A, Ramanavocous A (2004) Biosens Bioelectron 20:1076–1082

    Article  CAS  Google Scholar 

  13. Yagiuda K, Hemmi A, Ito S, Asano Y (1996) Biosens Bioelectron 11:703–707

    Article  CAS  Google Scholar 

  14. Tang D, Yuan R, Chai Y, Zhong X, Liu Y, Dai J (2004) Biochem Eng J 22:43–49

    Article  CAS  Google Scholar 

  15. Berggren C, Bjarnason B, Johansson G (1998) Biosens Bioelectron 13:1061–1068

    Article  CAS  Google Scholar 

  16. Berggren C, Bjarnason B, Johansson G (2001) Electroanalysis 13:173–180

    Article  CAS  Google Scholar 

  17. Berggren C, Johansson G (1997) Anal Chem 69:3651–3657

    Article  CAS  Google Scholar 

  18. Bontidean I, Ahlqvist J, Mulchandani A, Chen W, Bae W, Mehra RK, Mortari A, Csöregi E (2003) Biosens Bioelectron 18:547–553

    Article  CAS  Google Scholar 

  19. Hedström M, Galaev IY, Mattiasson B (2005) Biosens Bioelectron 21:41–48

    Article  CAS  Google Scholar 

  20. Hu SQ, Xie ZM, Lei CX, Shen GL, Yu RQ (2005) Sens Actuators B 106:641–647

    Article  CAS  Google Scholar 

  21. Limbut W, Kanatharana P, Mattiasson B, Asawatreratanakul P, Thavarungkul P (2006) Biosens Bioelectron 22:233–240

    Article  CAS  Google Scholar 

  22. Limbut W, Kanatharana P, Mattiasson B, Asawatreratanakul P, Thavarungkul P (2006) Anal Chim Acta 561:55–61

    Article  CAS  Google Scholar 

  23. Bataillard P, Gardies F, Jaffrezic-Renault N, Martelet C (1988) Anal Chem 60:2374–2379

    Article  CAS  Google Scholar 

  24. Billard V, Martelet C, Binder P, Therasse J (1991) Anal Chim Acta 249:367–372

    Article  CAS  Google Scholar 

  25. Gebbert A, Alvarez-Icaza M, Stocklein W, Schmid RD (1992) Anal Chem 64:997–1003

    Article  CAS  Google Scholar 

  26. Steltze M, Sackmann E (1989) Biochim Biophys Acta 981:135–142

    Article  Google Scholar 

  27. Yin T, Wei W, Yang L, Gao X, Gao Y (2006) Sens Actuators B 117:286–294

    Article  CAS  Google Scholar 

  28. Bain CD, Troughton EB, Tao Y-T, Evall J, Whitesides GM, Nuzzo RG (1989) J Am Chem Soc 111:321–335

    Article  CAS  Google Scholar 

  29. Kumar A, Khalil AAM, Galaev IY, Mattiasson B (2003) Enzyme Microb Technol 33:113–117

    Article  CAS  Google Scholar 

  30. Westphal O, Jann K (1965) Methods Carbohydr Chem 5:83–91

    CAS  Google Scholar 

  31. Hirayama C, Sakata M (2002) J Chromatogr B 781:419–432

    Article  CAS  Google Scholar 

  32. Berggren C, Bjarnason B, Johansson G (1999) Instrum Sci Technol 27:131–140

    CAS  Google Scholar 

  33. Jiang D, Tang J, Liu B, Yang P, Shen X, Kong J (2003) Biosens Bioelectron 18:1183–1191

    Article  CAS  Google Scholar 

  34. Wu ZS, Li JS, Deng T, Luo MH, Shen GL, Yu RQ (2005) Anal Biochem 337:308–315

    Article  CAS  Google Scholar 

  35. Kang Y, Luo RG (1998) J Chromatogr A 809:13–20

    Article  CAS  Google Scholar 

  36. Chang HC, Yang CC, Yeh TM (1997) Anal Chim Acta 340:49–54

    Article  CAS  Google Scholar 

  37. Levin J, Tomasulo PA, Oser RS (1970) J Lab Clin Med 75:903–911

    CAS  Google Scholar 

  38. Buck RP, Lindner E (1994) Pure Appl Chem 66:2527–2536

    CAS  Google Scholar 

  39. Brandenburg K, Koch MHJ, Seydel U (1998) Eur J Biochem 258:686–695

    Article  CAS  Google Scholar 

  40. Triola MF (1998) In: Triola MF (ed) Elementary statistics. Addison-Wesley, Reading, pp 655–668

    Google Scholar 

  41. van der Merwe PA (2000) In: Harding SE, Chowdhry BZ (eds) Protein-ligand interactions: a practical approach. Oxford University Press, Oxford, pp 137–170

    Google Scholar 

Download references

Acknowledgements

This project was supported The Royal Golden Jubilee PhD Program supported by Thailand Research Fund; The Swedish Research Council/Sida-Research Link Projects, The Swedish Center for Bioseparation; Center for Innovation in Chemistry: Postgraduate Education and Research Program in Chemistry (PERCH-CIC), Thailand; and Graduate School, Prince of Songkla University, Hat Yai, Thailand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Mattiasson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Limbut, W., Hedström, M., Thavarungkul, P. et al. Capacitive biosensor for detection of endotoxin. Anal Bioanal Chem 389, 517–525 (2007). https://doi.org/10.1007/s00216-007-1443-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-007-1443-4

Keywords

Navigation