Skip to main content

Advertisement

Log in

Development of an osteoblast-based 3D continuous-perfusion microfluidic system for drug screening

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this work, we demonstrated that biological cells could be cultured in a continuous-perfusion glass microchip system for drug screening. We used mouse Col1a1GFP MC-3T3 E1 osteoblastic cells, which have a marker gene system expressing green fluorescent protein (GFP) under the control of osteoblast-specific promoters. With our microchip-based cell culture system, we realized automated long-term monitoring of cells and sampling of the culture supernatant system for osteoblast differentiation assay using a small number of cells. The system successfully monitored cells for 10 days. Under the 3D microchannel condition, shear stress (0.07 dyne/cm2 at a flow rate of 0.2 μL/min) was applied to the cells and it enhanced the GFP expression and differentiation of the osteoblasts. Analysis of alkaline phosphatase (ALP), which is an enzyme marker of osteoblasts, supported the results of GFP expression. In the case of differentiation medium containing bone morphogenetic protein 2, we found that ALP activity in the culture supernatant was enhanced 10 times in the microchannel compared with the static condition in 48-well dishes. A combined system of a microchip and a cell-based sensor might allow us to monitor osteogenic differentiation easily, precisely, and noninvasively. Our system can be applied in high-throughput drug screening assay for discovering osteogenic compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sato K, Tokeshi M, Kitamori T, Sawada T (1999) Anal Sci 1:641–645

    Article  Google Scholar 

  2. Sorouraddin HM, Hibara A, Proskrunin MA, Kitamori T (2000) Anal Sci 16:1033–1037

    Article  CAS  Google Scholar 

  3. Tokeshi M, Minagawa T, Kitamori T (2000) J Chromatogr A 894:19–23

    Article  CAS  Google Scholar 

  4. Tokeshi M, Minagawa T, Kitamoroi T (2000) Anal Chem 72:1711–1714

    Article  CAS  Google Scholar 

  5. Hisamoto H, Horiuchi T, Tokeshi M, Hibara A, Kitamori T (2001) Anal Chem 73:1213–1218

    Article  Google Scholar 

  6. Hisamoto H, Saito T, Tokeshi M, Hibara A, Kitamori T (2001) Chem Commun 24:2662–2663

    Article  Google Scholar 

  7. Sato K, Tokeshi M, Odake T, Kimura H, Ooi T, Nakao M, Kitamori T (2000) Anal Chem 72:1144–1147

    Article  CAS  Google Scholar 

  8. Sato K, Tokeshi M, Kimura H, Kitamori T (2001) Anal Chem 73:1213–1218

    Article  CAS  Google Scholar 

  9. Sato K, Yamanaka M, Takahashi H, Tokeshi M, Kimura H, Kitamori T (2002) Electrophoresis 23:734–739

    Article  CAS  Google Scholar 

  10. Tanaka Y, Slyadnev MN, Hibara A, Tokeshi M, Kitamori T (2000) J Chromatogr A 894:45–51

    Article  CAS  Google Scholar 

  11. Slydnev MN, Tanaka Y, Tokeshi M, Kitamori T (2001) Anal Chem 73:4037–4044

    Article  Google Scholar 

  12. Tanaka Y, Sato K, Yamato M, Okano T, Kitamori T (2006) J Chromatogr A 1111:233–237

    Article  CAS  Google Scholar 

  13. Tanaka Y, Yamamoto M, Okano T, Kitamori T (2006) Meas Sci Technol 17:3167–3170

    Article  CAS  Google Scholar 

  14. Sato K, Egami A, Odake T, Tokeshi M, Aihara M, Kitamori T (2006) J Chromatorgr A 1111:228–232

    Article  CAS  Google Scholar 

  15. Tanaka Y, Kikukawa Y, Sato K, Sugii Y, Kitamori T (2007) Anal Sci 23:261–266

    Article  Google Scholar 

  16. Goto M, Sato K, Murakami A, Tokeshi M, Kitamori T (2005) Anal Chem 77:2125–2131

    Article  CAS  Google Scholar 

  17. Sikavitsas VI, Bancroft GN, Holtorf HL, Jansen JA, Mikos AG (2003) Proc Natl Acad Sci USA 100:14683–14688

    Article  CAS  Google Scholar 

  18. Yu X, Botchwey EA, Levine EM, Pollack SR, Laurencin CT (2004) Proc Natl Acad Sci USA 101:11203–11208

    Article  CAS  Google Scholar 

  19. Bancroft GN, Sikavitsas VI, van den Dolder J, Sheffield TL, Ambrose CG, Jansen JA, Mikos AG (2002) Proc Natl Acad Sci 99:12600–12605

    Article  CAS  Google Scholar 

  20. Leclerc E, David B, Griscom L, Lepioufle B, Fujii T, Layrolle P, Legallaisa C (2006) Biomaterials 27:586–595

    Article  CAS  Google Scholar 

  21. Urist MR (1965) Science 150:893–899

    Article  CAS  Google Scholar 

  22. Urist MR, Delange RJ, Finerman GAM (1983) Science 220:680–686

    Article  CAS  Google Scholar 

  23. Wozney JM, Rosen V, Celeste AJ, Mitsock LM, Whitters MJ, Kriz RW, Hewick RM, Wang EA (1988) Science 242:1528–1534

    Article  CAS  Google Scholar 

  24. Wang EA, Rosen V, Cordes P, Hewick RM, Kriz MJ, Luxenberg DP, Sibley BS, Wozney JM (1988) Proc Natl Acad Sci USA 85:9484–9488

    Article  CAS  Google Scholar 

  25. Rickard DJ, Sullivan TA, Shenker BJ, Leboy PS, Kazhdan I (1994) Dev Biol 161:218–228

    Article  Google Scholar 

  26. Murata H, Tanaka H, Taguchi T, Shiigi E, Mizokami H (2004) J Cell Biochem 92:715–722

    Article  CAS  Google Scholar 

  27. Osyczka AM, Diefenderfer DL, Bhargave G, Leboy PS (2004) Cells Tissues Organs 176:109–119

    Article  CAS  Google Scholar 

  28. Ohba S, Ikeda T, Kugimiya F, Yano F, Lichtler AC, Nakamura K, Takato T, Kawaguchi H, Chung UI (2007) FASEB J 21:1777

    Article  CAS  Google Scholar 

  29. Hibara A, Tokeshi M, Uchiyama K, Hisamoto H, Kitamori T (2001) Anal Sci 17:89–93

    Article  CAS  Google Scholar 

  30. Uchiyama K, Hibara A, Kimura H, Sawada T, Kitamori T (2000) Jpn J Appl Phys 39:5316–5322

    Article  CAS  Google Scholar 

  31. Tokeshi M, Uchida M, Hibara A, Sawada T, Kitamori T (2001) Anal Chem 73:2112–2116

    Article  CAS  Google Scholar 

  32. Kakuta M, Takahashi H, Kazuno S, Murayama K, Ueno T, Tokeshi M (2006) Meas Sci Technol 17:3189–3194

    Article  CAS  Google Scholar 

  33. Kitamori T, Tokeshi M, Hibara A, Sato K (2004) Anal Chem A 76:52–60

    Google Scholar 

  34. Hiki S, Mawatari K, Hibara A, Tokeshi M, Kitamori T (2003) Anal Sci 19:15–22

    Article  Google Scholar 

  35. Proskurnin MA, Slyadnev MN, Tokeshi M, Kitamori T (2003) Anal Chim Acta 480:79–95

    Article  CAS  Google Scholar 

  36. Suck K, Behr L, Fischer M, Hoffmeister H, van Griensven M, Stahl F, Scheper T, Kasper C (2007) J Biomed Mater Res A 80:268–275

    Google Scholar 

  37. Gomez-Sjoberg R, Leyrat AA, Pirone DM, Chen CS, Quake SR (2007) Anal Chem (in press)

  38. Jeon NL, Baskaran H, Dertinger SK, Whitesides GM, Van de Water L, TonerM (2002) Nat Biotechnol 20:826–830

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takehiko Kitamori.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jang, K., Sato, K., Igawa, K. et al. Development of an osteoblast-based 3D continuous-perfusion microfluidic system for drug screening. Anal Bioanal Chem 390, 825–832 (2008). https://doi.org/10.1007/s00216-007-1752-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-007-1752-7

Keywords

Navigation