Skip to main content
Log in

Rapid and quantitative DNA analysis of genetic mutations for polycystic kidney disease (PKD) using magnetic/luminescent nanoparticles

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Rapid and accurate detection of genetic mutations based on nanotechnology would provide substantial advances in detection of polycystic kidney disease (PKD), a disease whose current methods of detection are cumbersome due to the large size and duplication of the mutated gene. In this study, a nanotechnology-based DNA assay was developed for detection of SNPs (single nucleotide polymorphisms) in a feline autosomal dominant PKD (ADPKD) model which can readily be adapted to diagnosis of human ADPKD type 1. Europium and terbium phosphors were doped into gadolinium crystal hosts with a magnetic core, providing stable luminescence and the possibility of magnetic manipulations in a solution-based assay. A hybridization-in-solution DNA assay was optimized for feline PKD gene SNP detection using genomic DNA extracted from feline kidney tissue and blood. This assay showed a substantial differentiation between PKD and control specimens. The nanotechnology-based DNA assay is attractive from the viewpoint of rapid availability, simple methodology, and cost reduction for clinical use to detect mutations involved in human ADPKD and other genetic diseases.

Schematic diagram of PKD (Polycystic Kidney Disease) SNPs detection assay using feline genomic DNA in magnetic/luminescent nanoparticle-based DNA hybridization

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gerion D, Chen F, Kannan B, Fu A, Parak WJ, Chen DJ, Majumdar A, Alivisatos AP (2003) Anal Chem 75:4766

    Article  CAS  Google Scholar 

  2. Bao YP, Huber M, Wei T, Marla SS, Storhoff JJ, Muller UR (2005) Nucleic Acids Res 33:e15

    Article  Google Scholar 

  3. Zhou X, Zhou J (2004) Anal Chem 76:5302

    Article  CAS  Google Scholar 

  4. Qin WJ, Yung LYL (2007) Nucleic Acids Res 35:e111

    Article  Google Scholar 

  5. Storhoff JJ, Elghanian R, Mucic RC, Mirkin CA, Letsinger RL (1998) J Am Chem Soc 120:1959

    Article  CAS  Google Scholar 

  6. Storhoff JJ, Marla SS, Bao P, Hagenow S, Mehta H, Lucas A, Garimella V, Patno T, Buckingham W, Cork W, Muller UR (2004) Biosens Bioelectron 19:875

    Article  CAS  Google Scholar 

  7. Calvet JP, Granthan JJ (2001) Semin Nephrol 21:107

    Article  CAS  Google Scholar 

  8. Dalgaard OZ (1957) Acta Med Scand 328:1

    CAS  Google Scholar 

  9. Rossetti S, Strmecki L, Gamble V, Burton S, Sneddon V, Peral B, Roy S, Bakkaloglu A, Komel R, Winearls CG (2001) Am J Hum Genet 68:46

    Article  CAS  Google Scholar 

  10. Mochizuki H, Wu G, Hayashi T, Xenophontos SL, Veldhuisen B, Saris JJ, Reynolds DM, Cai Y, Gabow PA, Somlo S (1996) Science 272:1339

    Article  CAS  Google Scholar 

  11. Hateboer N, Veldhuisen B, Peter D, Breuning MH, San-Millan JL, Saggar-Malik AK, Torra R, Dimitrakov D, Martinez I, Sanz de Castro S, Krawczak M, Ravine D (2000) Kidney Int 57:1444

    Article  CAS  Google Scholar 

  12. Peral B, Ward CJ, San Millan JL, Thomas S, Stallings RL, Moreno F, Harris PC (1994) Am J Hum Genet 54:899

    CAS  Google Scholar 

  13. The European Polycystic Kidney Disease Consortium (1994) Cell 77:881

    Article  Google Scholar 

  14. Son A, Dosev D, Nichkova M, Ma Z, Kennedy IM, Scow KM, Hristova KR (2007) Anal Biochem 370:186

    Article  CAS  Google Scholar 

  15. Dosev D, Nichkova M, Dumas RK, Gee SJ, Hammock BD, Liu K, Kennedy IM (2007) Nanotechnology 18:055102

    Article  Google Scholar 

  16. Nichkova M, Dosev D, Gee SJ, Hammock BD, Kennedy IM (2007) Anal Biochem 369:34

    Article  CAS  Google Scholar 

  17. Dosev D, Guo B, Kennedy IM (2006) J Aerosol Sci 37:402

    Article  CAS  Google Scholar 

  18. Lyons LA, Biller DS, Erdman CA, Lipinski MJ, Young AE, Roe BA, Qin B, Grahn RA (2004) J Am Soc Nephrol 15:2548

    Article  CAS  Google Scholar 

  19. Ma ZY, Guan YP, Liu XQ, Liu HZ (2005) Langmuir 21:6987

    Article  CAS  Google Scholar 

  20. Bradford MM (1976) Anal Biochem 72:248

    Article  CAS  Google Scholar 

  21. Dosev D, Guo B, Kennedy IM (2006) J Aerosol Sci 37:402

    Article  CAS  Google Scholar 

  22. Helps CR, Taker S, Barr FJ, Wills SJ, Gruffydd-Jones TJ (2007) Mol Cell Probes 21:31

    Article  CAS  Google Scholar 

  23. Phakdeekitcharoen B, Watnick TJ, Germino GG (2001) J Am Soc Nephrol 12:955

    CAS  Google Scholar 

  24. Veldhuisen B, Saris JJ, de Haij S, Hayashi T, Reynolds DM, Mochizuki T, Elles R, Fossdal R, Bogdanova N, van Dijk MA, Coto E, Ravine D, Norby S, Verellen-Dumoulin C, Breuning MH, Somlo S, Peters DJM (1997) Am J Hum Genet 61:547

    Article  CAS  Google Scholar 

  25. Cheung V, Nelson S (1996) Proc Natl Acad Sci USA 93:14676

    Article  CAS  Google Scholar 

  26. Zhang L, Cui X, Schmitt K, Hubert R, Navidi W, Arnheim N (1992) Proc Natl Acad Sci USA 89:5847

    Article  CAS  Google Scholar 

  27. Dean FB, Hosono S, Fang L, Wu X, Faruqi AF, Bray-Ward P, Sun Z, Zong Q, Du Y, Du J, Driscoll M, Song W, Kingsmore SF, Egholm M, Lasken RS (2002) Proc Natl Acad Sci USA 99:5261

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr Robert A. Grahn and Dr Leslie Lyons in the School of Veterinary Medicine at UC Davis for providing feline kidney tissue and blood. The help of Dr Zhiya Ma in supplying the magnetic iron oxide particles for this study is gratefully acknowledged. This publication was made possible by grant number 5 P42 ES004699 from the National Institute of Environmental Health Sciences (NIEHS), NIH and the contents are solely the responsibility of the authors and do not necessarily represent the official views of the NIEHS, NIH (IMK, KRH). Support was also obtained from the Early Detection Research Network from the NCI (RHW) and grants from the VHL Family Alliance, Dialysis Clinics, Inc., and the Morris Animal Foundation (RHW).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krassimira R. Hristova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Son, A., Dhirapong, A., Dosev, D.K. et al. Rapid and quantitative DNA analysis of genetic mutations for polycystic kidney disease (PKD) using magnetic/luminescent nanoparticles. Anal Bioanal Chem 390, 1829–1835 (2008). https://doi.org/10.1007/s00216-008-1892-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-008-1892-4

Keywords

Navigation