Skip to main content
Log in

Time-domain fluorescence lifetime imaging for intracellular pH sensing in living tissues

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

pH sensing in living cells represents one of the most prominent topics in biochemistry and physiology. In this study we performed one-photon and two-photon time-domain fluorescence lifetime imaging with a laser-scanning microscope using the time-correlated single-photon counting technique for imaging intracellular pH levels. The suitability of different commercial fluorescence dyes for lifetime-based pH sensing is discussed on the basis of in vitro as well of in situ measurements. Although the tested dyes are suitable for intensity-based ratiometric measurements, for lifetime-based techniques in the time-domain so far only BCECF seems to meet the requirements of reliable intracellular pH recordings in living cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lichtman JW, Conchello J-A (2005) Nature Methods 2:910–919

    Article  CAS  Google Scholar 

  2. Conchello J-A, Lichtman JW (2005) Nature Methods 2:920–931

    Article  CAS  Google Scholar 

  3. Tadrous PJ (2000) J Pathol 191:229–234

    Article  CAS  Google Scholar 

  4. Suhling K, French PMW, Phillips D (2005) Photochem Photobiol Sci 4:13–22

    Article  CAS  Google Scholar 

  5. Lin H-J, Herman P, Lakowicz JR (2003) Cytometry A 52A:77–89

    Article  Google Scholar 

  6. Booth MJ, Wilson T (2004) J Microsc 214:36–42

    Article  CAS  Google Scholar 

  7. Herman P, Lin H-J, Abugo OO, Lakowicz JR (2001) Biophys J 80:364A

    Google Scholar 

  8. Squire A, Verveer PJ, Bastiaens PIH (2000) J Microsc 197:136–149

    Article  CAS  Google Scholar 

  9. van Munster EB, Gadella TWJ (2004) J Microsc 213:29–38

    Article  Google Scholar 

  10. Mitchell AC, Wall JE, Murray JG, Morgan CG (2002) J Microsc 206:225–232

    Article  CAS  Google Scholar 

  11. Buurman EP, Sanders R, Draaijer A, Gerritsen HC, Vanveen JJF, Houpt PM, Levine YK (1992) Scanning 14:155–159

    Google Scholar 

  12. Sytsma J, Vroom JM, De Grauw CJ, Gerritsen HC (1998) J Microsc 191:39–51

    Article  CAS  Google Scholar 

  13. Becker W, Bergmann A, Hink MA, König K, Benndorf K, Biskup C (2004) Mircosc Res Tech 63:58–66

    Article  CAS  Google Scholar 

  14. Becker W, Bergmann A, Biskup C (2007) Mircosc Res Tech 70:403–409

    Article  CAS  Google Scholar 

  15. Spriet C, Trinel D, Waharte F, Deslee D, Vandenbunder B, Barbillat J, Heliot L (2007) Microsc Res Tech 70:85–94

    Article  CAS  Google Scholar 

  16. Rubart M (2004) Circ Res 95:1154–1166

    Article  CAS  Google Scholar 

  17. Svoboda K, Yasuda R (2006) Neuron 50:823–839

    Article  CAS  Google Scholar 

  18. Denk W, Strickler JH, Webb WW (1990) Science 248:73–76

    Article  CAS  Google Scholar 

  19. Helmchen F, Denk W (2005) Nature Methods 2:932–940

    Article  CAS  Google Scholar 

  20. Kaneko H, Putzier I, Frings S, Kaupp UB, Gensch T (2004) J Neurosci 24:7931–7938

    Article  CAS  Google Scholar 

  21. Szmacinski H, Lakowicz JR (1995) Sensor Actuat B-Chem 29:16–24

    Article  Google Scholar 

  22. Gerritsen HC, Sanders R, Draaijer A, Levine YK (1997) J Fluoresc 7:11–17

    Article  CAS  Google Scholar 

  23. Schweitzer D, Schweitzer F, Hammer M, Gaillard ER, Schuett F (2004) Invest Ophth Vis Sci 45:U41

    Google Scholar 

  24. Treanor B, Lanigan PMP, Suhling K, Schreiber T, Munro I, Neil MAA, Phillips D, Davis DM, French PMW (2005) J Microsc 217:36–43

    Article  CAS  Google Scholar 

  25. Calleja V, Ameer-Beg SM, Vojnovic B, Woscholski R, Downward J, Larijani B (2003) Biochem J 372:33–40

    Article  CAS  Google Scholar 

  26. Biskup C, Zimmer T, Benndorf K (2004) Biophys J 86:334A

    Google Scholar 

  27. Peter M, Ameer-Beg SM, Hughes MKY, Keppler MD, Prag S, Marsh M, Vojnovic B, Ng T (2005) Biophys J 88:1224–1237

    Article  CAS  Google Scholar 

  28. Madshus IH (1988) Biochem J 250:1–8

    CAS  Google Scholar 

  29. Boron WF (1986) Ann Rev Physiol 48:377–388

    Article  CAS  Google Scholar 

  30. Boron WF (2004) Adv Physiol Educ 28:160–179

    Article  Google Scholar 

  31. Andersson RM, Carlsson K, Liljeborg A, Brismar H (2000) Anal Biochem 283:104–110

    Article  CAS  Google Scholar 

  32. Carlsson K, Liljeborg A, Andersson RM, Brismar H (2000) J Microsc 199:106–114

    Article  CAS  Google Scholar 

  33. Thomas J, Buchsbaum R, Zimniak A, Racker A (1979) Biochemistry 18:2210–2218

    Article  CAS  Google Scholar 

  34. Just F, Walz B (1996) J Exp Biol 199:407–413

    CAS  Google Scholar 

  35. Grynkiewicz G, Poenie M, Tsien RY (1985) J Biol Chem 260:3440–3450

    CAS  Google Scholar 

  36. Rink TJ, Tsien RY, Pozzan T (1982) J Cell Biol 95:189–196

    Article  CAS  Google Scholar 

  37. Wolfbeis OS, Fürlinger E, Kroneis H, Marsoner H (1983) Fresenius Z Anal Chem 314:119–124

    Article  CAS  Google Scholar 

  38. Liu J, Diwu Z, Leung W-Y (2001) Bioorg Med Chem Lett 11:2903–2905

    Article  CAS  Google Scholar 

  39. Lin H-J, Herman P, Kang JS, Lakowicz JR (2001) Anal Biochem 294:118–125

    Article  CAS  Google Scholar 

  40. Hegyi P, Rakonczay Z, Gray MA, Argent BE (2004) Pancreas 28:724–734

    Article  Google Scholar 

  41. Ryder AG, Glynn TJ, Przyjalgowski M, Szczupak B (2002) J Fluoresc 12:177–180

    Article  CAS  Google Scholar 

  42. Szmacinski H, Lakowicz JR (1993) Anal Chem 65:1668–1674

    Article  CAS  Google Scholar 

  43. Marcotte N, Brouwer AM (2005) J Phys Chem 109:11819–11828

    CAS  Google Scholar 

  44. Keating SM, Wensel TG (1991) Biophys J 59:186–202

    CAS  Google Scholar 

  45. Sanders R, Draaijer A, Gerritsen HC, Houpt PM, Levine YK (1995) Anal Biochem 227:302–308

    Article  CAS  Google Scholar 

  46. Walz B, Baumann O, Krach C, Baumann A, Blenau W (2006) Arch Insect Biochem Physiol 62:141–152

    Article  CAS  Google Scholar 

  47. Hille C, Walz B (2007) J Exp Biol 210:1463–1471

    Article  CAS  Google Scholar 

  48. Just F, Walz B (1994) J Morphol 220:35–46

    Article  CAS  Google Scholar 

  49. Lang I, Walz B (2001) J Insect Physiol 47:465–474

    Article  CAS  Google Scholar 

  50. Hanson KM, Behne MJ, Barry NP, Mauro TM, Gratton E, Clegg RM (2002) Biophys J 83:1682–1690

    Article  CAS  Google Scholar 

  51. Nakabayashi T, Wang H-P, Tsujimoto K, Miyauchi S, Kamo N, Ohta N (2007) Chem Let 36:206–207

    Article  CAS  Google Scholar 

  52. Xu C, Zipfel W, Shear JB, Williams RM, Webb WW (1996) Proc Nat Acad Sci 93:10763–10768

    Article  CAS  Google Scholar 

  53. Behne MJ, Meyer JW, Hanson KM, Barry NP, Murata S, Crumrine D, Clegg RW, Gratton E, Holleran WM, Elias PM, Mauro TM (2002) NHE1 regulates the stratum corneum permeability barrier homeostasis. J Biol Chem 277:47399–47406

    CAS  Google Scholar 

  54. Li JH-Y, Lindemann B (2003) Cell Tissue Res 313:11–27

    Article  Google Scholar 

  55. Sako Y, Sekihata A, Yanagisawa Y, Yamamoto M, Shimada Y, Ozaki K, Kusumi A (1997) J Microsc 185:9–20

    Article  CAS  Google Scholar 

  56. Urayama P, Zhong W, Beamish JA, Minn FK, Sloboda RD, Dragnev KH, Dmitrovsky E, Mycek M-A (2003) Appl Phys B 76:483–496

    CAS  Google Scholar 

  57. Grawnt DM, McGinty J, McGhee EJ, Bunny TD, Owen DM, Talbot CB, zhang W, Kumar S, Munro I, Lanigan PMP, Kennedy GT, Dunsby C, Magee AI, Courtney P, Katan M, Neil MAA, French PMW (2007) Opt Express 15:15656–15673

    Article  Google Scholar 

Download references

Acknowledgment

This work was funded by the German Federal Department for Science and Education BMBF (IP 03/517) and the German Research Foundation DFG. We thank Prof. B. Walz (Dept. of Animal Physiology, University of Potsdam) for the generous supply of cockroaches.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten Dosche.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hille, C., Berg, M., Bressel, L. et al. Time-domain fluorescence lifetime imaging for intracellular pH sensing in living tissues. Anal Bioanal Chem 391, 1871–1879 (2008). https://doi.org/10.1007/s00216-008-2147-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-008-2147-0

Keywords

Navigation