Skip to main content
Log in

Optimisation of the extraction of olive (Olea europaea) leaf phenolics using water/ethanol-based solvent systems and response surface methodology

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

An experimental setup based on a 23 full-factorial, central-composite design was implemented with the aim of optimising the recovery of polyphenols from olive leaves by employing reusable and nontoxic solutions composed of water/ethanol/citric acid as extracting media. The factors considered were (i) the pH of the medium, (ii) the extraction time and (iii) the ethanol concentration. The model obtained produced a satisfactory fit to the data with regard to total polyphenol extraction (R 2 = 0.91, p = 0.0139), but not for the antiradical activity of the extracts (R 2 = 0.67, p = 0.3734). The second-order polynomial equation obtained after analysing the experimental data indicated that ethanol concentration and time mostly affected the extraction yield, but that increased pH values were unfavourable in this regard. The maximum theoretical yield was calculated to be 250.2 ± 76.8 mg gallic acid equivalent per g of dry, chlorophyll-free tissue under optimal conditions (60% EtOH, pH 2 and 5 h). Liquid chromatography–electrospray ionisation mass spectrometry of the optimally obtained extract revealed that the principal phytochemicals recovered were luteolin 7-O-glucoside, apigenin 7-O-rutinoside and oleuropein, accompanied by smaller amounts of luteolin 3′,7-O-diglucoside, quercetin 3-O-rutinoside (rutin), luteolin 7-O-rutinoside and luteolin 3′-O-glucoside. Simple linear regression analysis between the total polyphenol and antiradical activity values gave a low and statistically insignificant correlation (R 2 = 0.273, p > 0.05), suggesting that it is not the sheer amount of polyphenols that provides high antioxidant potency; instead, this potency is probably achieved through interactions among the various phenolic constituents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AAR :

antiradical activity

OTL:

olive tree leaves

SD:

standard deviation

TP:

total polyphenols

References

  1. Laufenberg G, Kunz B, Nystroem M (2003) Biores Tech 87:167–198

    Article  CAS  Google Scholar 

  2. Schieber A, Stintzing FC, Carle R (2001) Trends Food Sci Tech 12:401–413

    Article  CAS  Google Scholar 

  3. Moure A, Cruz JM, Franco D, Domínguez JM, Sineiro J, Domínguez H, Núñez MJ, Parajó JC (2001) Food Chem 72:145–171

    Article  CAS  Google Scholar 

  4. Shi J, Nawaz H, Pohorly J, Mittal G, Kakuda Y, Jiang Y (2005) Food Rev Inter 21:139–166

    Article  CAS  Google Scholar 

  5. Niaounakis M, Halvadakis CP (2006) Olive processing waste management—literature review and patent survey. Pergamon, Oxford

  6. Silva S, Gomes L, Leitão F, Coelho AV, Vilas Boas L (2006) Food Sci Tech Inter 12:385–396

    Article  CAS  Google Scholar 

  7. Ranalli A, Contento S, Lucera L, Di Febo M, Marchegiani D, Di Fonzo V (2006) J Agric Food Chem 54:434–440

    Article  CAS  Google Scholar 

  8. Briante R, Patumi M, Terenziani S, Bismuto E, Febbraio F, Nucci R (2002) J Agric Food Chem 50:4934–4940

    Article  CAS  Google Scholar 

  9. Mourtzinos I, Salta F, Yannakopoulou K, Chiou A, Karathanos VT (2007) J Agric Food Chem 55:8088–8094

    Article  CAS  Google Scholar 

  10. Pereira AP, Ferreira ICFR, Marcelino F, Valentão P, Andrade PB, Seabra R, Estevinho L, Bento A, Pereira JA (2007) Molecules 12:1153–1162

    Article  CAS  Google Scholar 

  11. Merinhos J, Silva BM, Valentão P, Seabra RM, Pereira JA, Dias A, Andrade PB, Ferreres F (2005) Nat Prod Res 19:189–195

    Article  CAS  Google Scholar 

  12. Le Tutour B, Guedon D (1992) Phytochemistry 31:1173–1178

    Article  Google Scholar 

  13. Benavente-García O, Castillo J, Lorente J, Ortuño A, Del Rio JA (2000) Food Chem 68:457–462

    Article  Google Scholar 

  14. Benavente-García O, Castillo J, Lorente J, Alcaraz M (2002) J Med Food 5:125–135

    Article  Google Scholar 

  15. Paiva-Martins F, Gordon MH (2001) J Agric Food Chem 49:4214–4219

    Article  CAS  Google Scholar 

  16. Bouaziz M, Sayadi S (2005) Eur J Lipid Sci Technol 107:497–504

    Article  CAS  Google Scholar 

  17. Visioli F, Poli A, Galli C (2002) Med Res Rev 22:65–75

    Article  CAS  Google Scholar 

  18. Khan MY, Panchal S, Vyas N, Butani A, Kumar V (2007) Phytopharm Rev 1:114–118

    CAS  Google Scholar 

  19. Markin D, Duek L, Berdicevsky I (2003) Mycoses 46:132–136

    Article  CAS  Google Scholar 

  20. Korukluoglu M, Sahan Y, Yigit A (2008) J Food Saf 28:76–87

    Article  CAS  Google Scholar 

  21. Le Flock F, Tena MT, Ríos A, Valcárcel M (1998) Talanta 46:1123–1130

    Article  Google Scholar 

  22. Japón-Luján R, Luque-Rodríguez JM, Luque de Castro MD (2006) Anal Bioanal Chem 385:753–759

    Article  CAS  Google Scholar 

  23. Japón-Luján R, Luque-Rodríguez JM, Luque de Castro MD (2006) J Chromatogr A 1108:76–82

    Google Scholar 

  24. Malik NSA, Bradford JM (2008) J Food Agric Environ 6:8–13

    CAS  Google Scholar 

  25. Arnous A, Makris DP, Kefalas P (2002) J Food Compos Anal 15:655–665

    Article  CAS  Google Scholar 

  26. Mabry TJ, Markham KR, Thomas MB (1970) The systematic identification of flavonoids. Springer, Berlin

    Google Scholar 

  27. Cacace JE, Mazza G (2003) J Food Sci 68:240–248

    Article  CAS  Google Scholar 

  28. Madhujith T, Shahidi F (2006) J Agric Food Chem 54:8048–8057

    Article  CAS  Google Scholar 

  29. Silva EM, Rogez H, Larondelle Y (2007) Separ Purif Technol 55:381–387

    Article  CAS  Google Scholar 

  30. Zhang Z-S, Li D, Wang L-J, Ozkan N, Chen XD, Mao Z-H, Yang H-Z (2007) Separ Purif Technol 57:17–24

    Article  CAS  Google Scholar 

  31. Makris DP, Kallithraka S, Mamalos A (2006) Talanta 70:1143–1152

    Article  CAS  Google Scholar 

  32. Makris DP, Kefalas P (2005) Food Sci Technol Int 11:11–18

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitris P. Makris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mylonaki, S., Kiassos, E., Makris, D.P. et al. Optimisation of the extraction of olive (Olea europaea) leaf phenolics using water/ethanol-based solvent systems and response surface methodology. Anal Bioanal Chem 392, 977–985 (2008). https://doi.org/10.1007/s00216-008-2353-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-008-2353-9

Keywords

Navigation