Skip to main content
Log in

A glass microfluidic chip for continuous blood cell sorting by a magnetic gradient without labeling

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

This paper presents a microfluidic chip for highly efficient separation of red blood cells (RBCs) from whole blood on the basis of their native magnetic properties. The glass chip was fabricated by photolithography and thermal bonding. It consisted of one inlet and three outlets, and a nickel wire of 69-μm diameter was positioned in the center of a separation channel with 149-μm top width and 73-μm depth by two parallel ridges (about 10 μm high). The two ridges were formed simultaneously during the wet etching of the channels. The nickel wire for generating the magnetic gradient inside the separation channel was introduced from the side of the chip through a guide channel. The external magnetic field was applied by a permanent magnet of 0.3 T placed by the side of the chip and parallel to the main separation channel. The RBCs were separated continuously from the 1:40 (v/v) diluted blood sample at a flow rate in the range 0.12–0.92 μL/min (9–74 mm/min) with the chip, and up to 93.7% of the RBCs were collected in the middle outlet under a flow rate of 0.23 μL/min. The cell sedimentation was alleviated by adjusting the specific density of the supporting media with bovine serum albumin. Quantum dot labeling was introduced for visual fluorescence tracking of the separation process. The uneven distribution phenomenon of the blood cells around the nickel wire was reported and discussed.

Glass chip with single Ni wire aligned in the microchannel for continuous magnetic separation of blood cells

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Takayasu M, Kelland DR, Minervini JV, Friedlaender FJ, Ash SR (1999) Paper presented at IWCPB-HMF (international workshop on chemical, physical and biological processes under high magnetic fields), Omiya, Saitame, Japan, 24–26 November

  2. Han KH, Frazier AB (2006) Lab Chip 6:265–273

    Article  CAS  Google Scholar 

  3. Melville D, Paul F, Roath S (1975) Nature 255:706

    Article  CAS  Google Scholar 

  4. Owen CS (1978) Biophys J 22:171–178

    CAS  Google Scholar 

  5. Takayasu M, Duske N, Ash SR, Friedlaender FJ (1982) IEEE Trans Magn Mag 18(6):1520

    Article  Google Scholar 

  6. Takayasu M, Kelland DR, Minevini JV (1999) Paper presented at 16th international conference on magnet technology, Florida, USA, 26 September-2 October

  7. Zborowski M, Ostera GR, Moore LR, Milliron S, Chalmers JJ, Schechter AN (2003) Biophys J 84:2638–2645

    Article  CAS  Google Scholar 

  8. Han KH, Frazier AB (2005) NSTI-Nanotech 1:187–190

    CAS  Google Scholar 

  9. Han KH, Frazier AB (2004) J Appl Phys 96:5797–5802

    Article  CAS  Google Scholar 

  10. Yi CQ, Li CW, Ji SL, Yang MS (2006) Anal Chim Acta 560:1–23

    Article  CAS  Google Scholar 

  11. Li XJ, Li PCH (2005) Anal Chem 77:4315–4322

    Article  CAS  Google Scholar 

  12. Yang MS, Li CW, Yang J (2002) Anal Chem 74:3991–4001

    Article  CAS  Google Scholar 

  13. Furdui VI, Harrison DJ (2004) Lab Chip 4:614–618

    Article  CAS  Google Scholar 

  14. Grodzinski P, Yang J, Liu RH, Ward MD (2003) Biomed Microdevices 5:303–310

    Article  CAS  Google Scholar 

  15. Inglis DW, Riehn R, Austin RH, Sturm JC (2004) Appl Phys Lett 85:5093–5095

    Article  CAS  Google Scholar 

  16. Enger J, Goksor M, Ramser K, Hagberg P, Hanstorp D (2004) Lab Chip 4:196–200

    Article  CAS  Google Scholar 

  17. Chiou PY, Ohta AT, Wu MC (2005) Nature 436:370–372

    Article  CAS  Google Scholar 

  18. Brody JP, Osborn TD, Forster FK, Yager P (1996) Sens Actuators A 54:704–708

    Article  Google Scholar 

  19. Crowley TA, Pizziconi V (2005) Lab Chip 5:922–929

    Article  CAS  Google Scholar 

  20. Chen X, Cui DF, Liu CC, Li H Sens (2007) Sens Actuators B. doi:10.1016/j.snb.2007.07.126

  21. Chou C, Morgan M, Zenhausern F, Prinz C, Austin R (2002) MicroTAS 25–27

  22. Durr M, Kentsch J, Muller T, Schnelle T, Stelzle M (2003) Electrophoresis 24:722–731

    Article  CAS  Google Scholar 

  23. Huang Y, Joo S, Duhon M, Heller M, Wallace B, Xu X (2002) Anal Chem 74:3362–3371

    Article  CAS  Google Scholar 

  24. Gill R, Freeman R, Xu JP, Willner I, Wingograd S, Shweky I, Banin U (2006) J Am Chem Soc 128:15376–15377

    Article  CAS  Google Scholar 

  25. Wu SM, Zhao X, Zhang ZL, Xie HY, Tian ZQ (2006) Chemphyschem 7:1062–1067

    Article  CAS  Google Scholar 

  26. Jiang C, Xu SK, Yang DZ, Zhang FH, Wang WX (2007) Luminescence 22:430–437

    Article  CAS  Google Scholar 

  27. Xie M, Liu HH, Chen P, Zhang ZL, Wang XH, Xie ZX, Du YM, Pan BQ, Pang DW (2005) Chem Commun 44:5518–5520

    Article  CAS  Google Scholar 

  28. Jaiswal JK, Simon SM (2004) Trends Cell Biol 14:497–504

    Article  CAS  Google Scholar 

  29. Fang F, Wu ZY (2006) Chin Patent Appl 200610047737.4

  30. Yin XF, Shen H, Fang ZL (2003) Chin J Anal Chem 31:116–119

    CAS  Google Scholar 

  31. Fang DF, Zhou L, Ding L, Zhang DC (1995) Modern medicinal research technology manual. Union Press of Peking University of Medical Science and Peking Union Medical College, Beijing

    Google Scholar 

  32. Chen QF, Wang WX, Ge YX, Xu SK, Yang DZ (2007) Chin J Anal Lab 26:1–5

    Google Scholar 

  33. Moeser GD, Roach KA, Green WH, Hatton TA, Laibinis PE (2004) AIChE J 50:2835–2848

    Article  CAS  Google Scholar 

  34. Qiu JC (1987) Mineral processing technology. Metallurgical Industry, Beijing

    Google Scholar 

  35. Charles N, Liesveld JL, King MR (2007) Biotechnol Prog 23:1463–1472

    Article  CAS  Google Scholar 

  36. McCloskey KE, Chalmers JJ, Zborowski M (2003) Anal Chem 75:6868–6874

    Article  CAS  Google Scholar 

  37. Kuhara M, Takeyama H, Tanaka T, Matsunaga T (2004) Anal Chem 76:6207–6213

    Article  CAS  Google Scholar 

  38. Xie HY, Zuo C, Liu Y, Zhang ZL, Pang DW, Li XL, Gong JP (2005) Small 5:506–509

    Article  CAS  Google Scholar 

  39. Wang GP, Song EQ, Xie HY, Zhang ZL, Tian ZQ, Zuo C, Pang DW, Wu DC, Shi YB (2005) Chem Commun 34:4276–4278

    Article  CAS  Google Scholar 

  40. Liu YJ, Guo SS, Zhang ZL, Huang WH, Baigl D, Xie M, Chen Y, Pang DW (2007) Electrophoresis 28:4713–4722

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from Northeastern University is acknowledged. The authors are grateful to Hong-Zhuan Yin from the Chinese Medicine University for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Yong Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qu, BY., Wu, ZY., Fang, F. et al. A glass microfluidic chip for continuous blood cell sorting by a magnetic gradient without labeling. Anal Bioanal Chem 392, 1317–1324 (2008). https://doi.org/10.1007/s00216-008-2382-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-008-2382-4

Keywords

Navigation