Skip to main content
Log in

Photonic sensor devices for explosive detection

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

For the sensitive online and in situ detection of gaseous species, optical methods are ideally suited. In contrast to chemical analysis, no sample preparation is necessary and therefore spectroscopic methods should be favorable both in respect of a fast signal recovery and economically because no disposal is needed. However, spectroscopic methods are currently not widely used for security applications. We review photonic sensor devices for the detection of explosives in the gas phase as well as the condensed phase and the underlying spectroscopic techniques with respect to their adaptability for security applications, where high sensitivity, high selectivity, and a low false-alarm rate are of importance. The measurements have to be performed under ambient conditions and often remote handling or even operation in standoff configuration is needed. For handheld and portable equipment, special attention is focused on the miniaturization and examples for already-available sensor devices are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CRDS:

cavity ring down spectroscopy

LIBS:

laser induced breakdown spectroscopy

QEPAS:

quartz-enhanced photoacoustic spectroscopy

RDX:

cyclotrimethylenetrinitramine

TATP:

triacetone triperoxide

References

  1. Moore D (2007) Instrum Sens Imaging 8:9–38

    Article  Google Scholar 

  2. Steinfeld JI, Wormhoudt J (1998) Annu Rev Phys Chem 49:203–232

    Article  CAS  Google Scholar 

  3. Moore DS (2004) Rev Sci Instrum 75:2499–2512

    Article  CAS  Google Scholar 

  4. Wallin S, Pettersson A, Östmark H, Hobro A, Zachhuber B, Lendl B, Mordmüller M, Bauer C, Schade W, Willer U, Laserna JJ, Lucena P (2009) In: Pachman J, Selesovsky J, Matyas R (eds) New trends in research of energetic materials, vol 12. University of Pardubice, Czech Republic, pp 349–368

  5. Oxley JC, Smith JL, Shinde K, Moran J (2005) Propellants Explos Pyrotech 30:127–130

    Article  CAS  Google Scholar 

  6. Cundall RB, Palmer TF, Wood CEC (1978) J Chem Soc Faraday Trans 74:1339–1345

    Article  CAS  Google Scholar 

  7. Oxley J, Smith J, Brady J, Dubnikova F, Kosloff R, Zeiri L, Zeiri Y (2008) Appl Spectrosc 62:906–915

    Article  CAS  Google Scholar 

  8. Brauer B, Dubnikova F, Zeiri Y, Kosloff R, Gerber RB (2008) Spectrochim Acta Part A Mol Biomol Spectrosc 71:1438–1445

    Article  CAS  Google Scholar 

  9. Pal A, Clark CD, Sigman M, Killinger DK (2009) Appl Opt 48:B145–B150

    Article  CAS  Google Scholar 

  10. Todd MW, Provencal RA, Owano TG, Paldus BA, Kachanov A, Vodopyanov KL, Hunter M, Coy SL, Steinfeld JI, Arnold JT (2002) Appl Phys B Lasers Opt 75:367–376

    Article  CAS  Google Scholar 

  11. Furton KG, Myers LJ (2001) Talanta 54:487–500

    Article  CAS  Google Scholar 

  12. Nadezhdinskii AI, Ponurovskii YY, Stavrovskii DB (2008) Appl Phys B Lasers Opt 90:361–364

    Article  CAS  Google Scholar 

  13. Wu D, Singh JP, Yueh FY, Monts DL (1996) Appl Opt 35:3998–4003

    Article  CAS  Google Scholar 

  14. Cabalo J, Sausa R (2005) Appl Opt 44:1084–1091

    Article  CAS  Google Scholar 

  15. Heflinger D, Arusi-Parpar T, Ron Y, Lavi R (2002) Opt Commun 204:327–331

    Article  CAS  Google Scholar 

  16. Swayambunathan V, Singh G, Sausa RC (1999) Appl Opt 38:6447–6454

    Article  CAS  Google Scholar 

  17. Monterola M, Smith B, Omenetto N, Winefordner J (2008) Anal Bioanal Chem 391:2617–2626

    Article  CAS  Google Scholar 

  18. Bauer C, Sharma AK, Willer U, Burgmeier J, Braunschweig B, Schade W, Blaser S, Hvozdara L, Müller A, Holl G (2008) Appl Phys B 92:327–333

    Article  CAS  Google Scholar 

  19. Vadillo JM, Laserna JJ (2004) Spectrochim Acta Part B At Spectrosc 59:147–161

    Article  CAS  Google Scholar 

  20. Gottfried JL, De Lucia FC Jr, Munson CA, Miziolek AW (2008) J Anal At Spectrom 23:205–216

    Article  CAS  Google Scholar 

  21. Lopez-Moreno C, Palanco S, Laserna JJ, De Lucia FC Jr, Miziolek AW, Rose J, Walters RA, Whitehouse AI (2006) J Anal At Spectrom 21:55–60

    Article  CAS  Google Scholar 

  22. DeLucia FC Jr, Samuels AC, Harmon RS, Walters RA, McNesby KL, LaPointe A, Winkel RJ Jr, Miziolek AW (2005) Sens J IEEE 5:681–689

    Article  CAS  Google Scholar 

  23. De Lucia FC Jr, Gottfried JL, Munson CA, Miziolek AW (2007) Spectrochim Acta Part B At Spectrosc 62:1399–1404

    Article  CAS  Google Scholar 

  24. De Lucia FC Jr, Gottfried JL, Munson CA, Miziolek AW (2008) Appl Opt 47:G112–G121

    Article  Google Scholar 

  25. Gottfried JL, De Lucia FC Jr, Munson CA, Miziolek AW (2007) Spectrochim Acta Part B At Spectrosc 62:1405–1411

    Article  CAS  Google Scholar 

  26. Colao F, Lazic V, Fantoni R, Pershin S (2002) Spectrochim Acta Part B At Spectrosc 57:1167–1179

    Article  Google Scholar 

  27. Schade W, Bauer C, Orghici R, Waldvogel S, Börner S (2008) In: Kuznetsov A, Osetrov OI, Östmark H (eds) Detection of liquid explosives and flammable agents in connection with terrorism. Springer, Dordrecht, pp 215–227

  28. Bohling C, Scheel D, Hohmann K, Schade W, Reuter M, Holl G (2006) Appl Opt 45:3817–3825

    Article  CAS  Google Scholar 

  29. Lewis IR, Daniel NW, Griffiths PR (1997) Appl Spectrosc 51:1854–1867

    Article  CAS  Google Scholar 

  30. Eliasson C, Macleod NA, Matousec P (2007) Anal Chem 79:8185–8189

    Article  CAS  Google Scholar 

  31. Nagli L, Gaft M, Fleger Y, Rosenbluh M (2008) Opt Mater 30:1747–1754

    Article  CAS  Google Scholar 

  32. Gaft M, Nagli L (2008) Opt Mater 30:1739–1746

    Article  CAS  Google Scholar 

  33. Johansson I, Norrefeldt M, Pettersson A, Wallin S, Östmark H (2008) In: Kuznetsov A, Osetrov OI, Östmark H (eds) Detection of liquid explosives and flammable agents in connection with terrorism. Springer, Dordrecht, pp 143–153

  34. Carter JC, Angel SM, Lawrence-Snyder M, Scaffidi J, Whipple RE, Reynolds JG (2005) Appl Spectrosc 59:769–775

    Article  CAS  Google Scholar 

  35. Portnov A, Rosenwaks S, Bar I (2008) Appl Phys Lett 93:41115

    Article  CAS  Google Scholar 

  36. Wu M, Ray M, Fung KH, Ruckman MW, Harder D, Sedlacek AJ (2000) Appl Spectrosc 54:800–806

    Article  CAS  Google Scholar 

  37. Carter JC, Scaffidi J, Burnett S, Vasser B, Sharma SK, Angel SM (2005) Spectrochim Acta Part A Mol Biomol Spectrosc 61:2288–2298

    Article  CAS  Google Scholar 

  38. Ray MD, Sedlacek AJ, Wu M (2000) Rev Sci Instrum 71:3485–3489

    Article  CAS  Google Scholar 

  39. Sharma SK, Misra AK, Lucey PG, Angel SM, McKay CP (2006) Appl Spectrosc 60:871–876

    Article  CAS  Google Scholar 

  40. Moore D, Scharff R (2009) Anal Bioanal Chem 393:1571–1578

    Article  CAS  Google Scholar 

  41. Harvey SD, Peters TJ, Wright BW (2003) Appl Spectrosc 57:580–587

    Article  CAS  Google Scholar 

  42. Stuart DA, Biggs KB, Van Duyne RP (2006) Analyst 131:568–572

    Article  CAS  Google Scholar 

  43. Zhang X, Young MA, Lyandres O, van Duyne RP (2005) J Am Chem Soc 127:4484–4489

    Article  CAS  Google Scholar 

  44. Patel CKN (2008) Eur Phys J Spec Top 153:1–18

    Article  Google Scholar 

  45. Prasad RL, Prasad R, Bhar GC, Thakur SN (2002) Spectrochim Acta Part A Mol Biomol Spectrosc 58:3093–3102

    Article  CAS  Google Scholar 

  46. Webber ME, Pushkarsky M, Patel CKN (2005) J Appl Phys 97:113101

    Article  CAS  Google Scholar 

  47. Dunayevskiy I, Tsekoun A, Prasanna M, Go R, Patel CKN (2007) Appl Opt 46:6397–6404

    Article  Google Scholar 

  48. Kosterev AA, Bakhirkin YA, Curl RF, Tittel FK (2002) Opt Lett 27:1902–1904

    Article  CAS  Google Scholar 

  49. Wolfenstein R (1895) Chem Ber 28:2265–2269

    Article  Google Scholar 

  50. Bauer C, Willer U, Pohlkötter A, Kosterev A, Kosynkin D, Tittel FK, Schade W (2009) J Phys Conf Ser 157:012002

    Article  CAS  Google Scholar 

  51. Siering C, Kerschbaumer H, Nieger M, Waldvogel SR (2006) Org Lett 8:1471–1474

    Article  CAS  Google Scholar 

  52. Waldvogel SR, Fröhlich R, Schalley CA (2000) Angew Chem Int Ed 39:2472–2475

    Article  CAS  Google Scholar 

  53. Orghici R, Willer U, Gierszewska M, Waldvogel S, Schade W (2008) Appl Phys B 90:355–360

    Article  CAS  Google Scholar 

  54. Sohn I-B, Lee M-S, Woo J-S, Lee S-M, Chung J-Y (2005) Opt Express 13:4224–4229

    Article  CAS  Google Scholar 

  55. Ramos C, Dagdigian PJ (2007) Appl Opt 46:620–627

    Article  CAS  Google Scholar 

  56. Shen YC, Lo T, Taday PF, Cole BE, Tribe WR, Kemp MC (2005) Appl Phys Lett 86:241116

    Article  CAS  Google Scholar 

  57. Federici JF, Schulkin B, Huang F, Gary D, Barat R, Oliveira F, Zimdars D (2005) Semicond Sci Technol 20:S266–S280

    Article  CAS  Google Scholar 

  58. Katz O, Natan A, Silberberg Y, Rosenwaks S (2008) Appl Phys Lett 92:171116

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Schade.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Willer, U., Schade, W. Photonic sensor devices for explosive detection. Anal Bioanal Chem 395, 275–282 (2009). https://doi.org/10.1007/s00216-009-2934-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-2934-2

Keywords

Navigation