Skip to main content
Log in

Analytical strategies for characterizing the surface chemistry of nanoparticles

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Chemical modifications of nanoparticle (NP) surfaces are likely to regulate their activities, remove their toxic effects, and enable them to perform desired functions. It is urgent to develop analytical strategies for acquiring structural and quantitative information about small molecules linked to the surface of NP. Recent progress in characterizing the surface chemistry of NPs using nuclear magnetic resonance (NMR) spectroscopy, Fourier-transform infrared (FTIR) spectroscopy, liquid chromatography–mass spectroscopy (LC–MS), X-ray photoelectron spectroscopy (XPS), and combustion elemental analysis are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Fig. 6
Fig. 7
Scheme 2
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Lynch I, Dawson KA, Linse S (2006) Sci STKE 327:14–19

    Google Scholar 

  2. Norde W, Lyklema J (1991) J Biomater Sci Polym Ed 2:183

    CAS  Google Scholar 

  3. Gray JJ (2004) Curr Opin Struct Biol 14:110–115

    Article  CAS  Google Scholar 

  4. Hong R, Fischer NO, Verma A, Goodman CM, Emrick T, Rotello VM (2004) J Am Chem Soc 126:739–743

    Article  CAS  Google Scholar 

  5. Weissleder R, Kelly K, Sun EY, Shtatland T, Josephson L (2005) Nat Biotechnol 23:1418–1423

    Article  CAS  Google Scholar 

  6. Zhou HY, Mu QX, Gao NN, Liu AF, Xing YH, Gao SL, Zhang Q, Qu GB, Chen YY, Liu G, Zhang B, Yan B (2008) Nano Lett 8:859–865

    Article  CAS  Google Scholar 

  7. Sachleben JR, Wooten EW, Emsley L, Pines A, Colvin VL, Alivisatos AP (1992) Chem Phys Lett 198:431–436

    Article  CAS  Google Scholar 

  8. Sachleben JR, Colvin V, Emsley L, Wooten EW, Alivisatos AP (1998) J Phys Chem B 102:10117–10128

    Article  CAS  Google Scholar 

  9. Lippens PE, Lannoo M (1989) Phys Rev B: Condens Matter 39:10935–10942

    CAS  Google Scholar 

  10. Majetich SA, Carter AC, Belot J, McCullough RD (1994) J Phys Chem 98:13705–13710

    Article  CAS  Google Scholar 

  11. Diaz D, Rivera M, Ni T, Rodriguez JC, Gastillo-Blum SE, Nagesha D, Robles J, Alvarez-Fregoso OJ, Kotov NA (1999) J Phys Chem B 103:9854–9858

    Article  CAS  Google Scholar 

  12. Holland GP, Sharma R, Agola JO, Amin S, Solomon VC, Singh P, Buttry DA, Yarger JL (2007) Chem Mater 19:2519–2526

    Article  CAS  Google Scholar 

  13. Willis AL, Turro NJ, O’Brien S (2005) Chem Mater 17:5970–5975

    Article  CAS  Google Scholar 

  14. Wang Z, Liu Q, Zhu H, Liu H, Chen Y, Yang M (2007) Carbon 45:285–292

    Article  CAS  Google Scholar 

  15. Lin Y, Rao AM, Sadanadan B, Kenik EA, Sun Y-P (2002) J Phys Chem B 106:1294–1298

    Article  CAS  Google Scholar 

  16. Hong C-Y, You Y-Z, Pan C-Y (2006) Polymer 47:4300–4309

    Article  CAS  Google Scholar 

  17. Sun Y-P, Fu K, Lin Y, Huang W (2002) Acc Chem Res 35:1096–1104

    Article  CAS  Google Scholar 

  18. Barrientos AG, de la Fuente JM, Rojas TC, Fernάndez A, Penadés S (2003) Chem Eur J 9:1909–1921

    Article  CAS  Google Scholar 

  19. Alvaro M, Aprile C, Ferrer B, Garcia H (2007) J Am Chem Soc 129:5647–5655

    Article  CAS  Google Scholar 

  20. Gibson JD, Khanal BP, Zubarev ER (2007) J Am Chem Soc 129:11653–11661

    Article  CAS  Google Scholar 

  21. Zhang Y, Zhang J (2005) J Colloid Interface Sci 283:352–357

    Article  CAS  Google Scholar 

  22. Murakami Y, Konishi K (2007) J Am Chem Soc 129:14401–14407

    Article  CAS  Google Scholar 

  23. Foos EE, Snow AW, Twigg ME, Ancona MG (2002) Chem Mater 14:2401–2408

    Article  CAS  Google Scholar 

  24. Du FF, Zhou HY, Chen LX, Zhang B, Yan B (2009) Trends Anal Chem 28:88–95

    Article  CAS  Google Scholar 

  25. Terrill RH, Postlethwaite TA, Chen C, Poon CD, Terzis A, Chen A, Hutchison JE, Clark MR, Wignall G, Londono JD, Superfine R, Falvo M, Johnson CS, Samulski ET, Murray RW (1995) J Am Chem Soc 117:12537–12548

    Article  CAS  Google Scholar 

  26. Templeton AC, Hostetler MJ, Kraft CT, Murray RW (1998) J Am Chem Soc 120:1906–19911

    Article  CAS  Google Scholar 

  27. Fleming DA, Thode CJ, Williams ME (2006) Chem Mater 18:2327–2334

    Article  CAS  Google Scholar 

  28. Rowe MP, Plass KE, Kim K, Kurdak C, Zellers ET, Matzger AJ (2004) Chem Mater 16:3513–3517

    Article  CAS  Google Scholar 

  29. Tan H, Zhan T, Fan WY (2006) J Phys Chem B 110:21690–21693

    Article  CAS  Google Scholar 

  30. Song Y, Harper AS, Murray RW (2005) Langmuir 21:5492–5500

    Article  CAS  Google Scholar 

  31. Zelakiewicz BS, de Dios AC, Tong YY (2003) J Am Chem Soc 125:18–19

    Article  CAS  Google Scholar 

  32. Badia A, Gao W, Singh S, Demers L, Cuccia L, Reven L (1996) Langmuir 12:1262–1269

    Article  CAS  Google Scholar 

  33. Schmitt H, Badia A, Dickinson L, Reven L, Lennox RB (1998) Adv Mater 10:475–480

    Article  CAS  Google Scholar 

  34. Fiurasek P, Reven L (2007) Langmuir 23:2857–2866

    Article  CAS  Google Scholar 

  35. Zhu Y, Peng AT, Carpenter K, Maguire JA, Hosmane NS, Takagaki M (2005) J Am Chem Soc 127:9875–9880

    Article  Google Scholar 

  36. Xu M, Zhang T, Gu B, Wu JL, Chen Q (2006) Macromolecules 39:3540–3545

    Article  CAS  Google Scholar 

  37. Berrettini MG, Braun G, Hu JG, Strouse GF (2004) J Am Chem Soc 126:7063–7070

    Article  CAS  Google Scholar 

  38. Anderson RC, Jarema MA, Shapiro MJ, Stokes JP, Ziliox M (1995) J Org Chem 60:2650–2651

    Article  CAS  Google Scholar 

  39. Anderson RC, Stokes JP, Shapiro MJ (1995) Tetrahedron Lett 36:5311–5314

    CAS  Google Scholar 

  40. Wehler T, Westman J (1996) Tetrahedron Lett 37:4771–4774

    Article  CAS  Google Scholar 

  41. Keifer PA, Baltusis L, Rice DM, Tymiak AA, Shoolery JN (1996) J Magn Reson Ser A 119:65–75

    Article  CAS  Google Scholar 

  42. Shapiro MJ, Chin J, Marti RE, Jarosinski MA (1997) Tetrahedron Lett 38:1333–1336

    Article  CAS  Google Scholar 

  43. Keifer PA (1997) Drug Discovery Today 2:468–478

    Article  CAS  Google Scholar 

  44. Warrass R, Wieruszeski JM, Boutillon C, Lippens G (2000) J Am Chem Soc 122:1789–1795

    Article  CAS  Google Scholar 

  45. Warrass R, Lippens G (2000) J Org Chem 65:2946–2950

    Article  CAS  Google Scholar 

  46. Taylor JL, Wu CL, Cory D, Gonzalez RG, Bielecki A, Cheng LL (2003) Magn Reson Med 50:627–632

    Article  Google Scholar 

  47. Keshari KR, Zektzer AS, Swanson MG, Majumdar S, Lotz JC, Kurhanewicz J (2005) Magn Reson Med 53:519–527

    Article  CAS  Google Scholar 

  48. Li W, Lee REB, Lee RE, Li JH (2005) Anal Chem 77:5785–5792

    Article  CAS  Google Scholar 

  49. Li W (2006) Analyst 131:777–781

    Article  CAS  Google Scholar 

  50. Weybright P, Millis K, Campbell N, Cory DG, Singer S (1998) Magn Reson Med 39:337–345

    Article  CAS  Google Scholar 

  51. Polito L, Monti D, Caneva E, Delnevo E, Russo G, Prosperi D (2008) Chem Commun 5:621–623

    Article  Google Scholar 

  52. Sadasivan S, Khushalani D, Mann SJ (2003) Mater Chem 13:1023–1029

    Article  CAS  Google Scholar 

  53. Bauer F, Glasel HJ, Hartmann E, Bilz E, Mehnert R (2003) Nucl Instrum Methods Phys Res B 208:267–270

    Article  CAS  Google Scholar 

  54. Badia A, Lennox RB, Reven L (2000) Acc Chem Res 33:475–481

    Article  CAS  Google Scholar 

  55. Badia A, Demers L, Dickinson L, Morin FG, Lennox RB, Reven L (1997) J Am Chem Soc 119:11104–11105

    Article  CAS  Google Scholar 

  56. Pawsey S, Yach K, Reven L (2002) Langmuir 18:5205–5212

    Article  CAS  Google Scholar 

  57. Zhou HY, Du FF, Li X, Zhang B, Li W, Yan B (2008) J Phys Chem C 112:19360–19366

    Article  CAS  Google Scholar 

  58. Kohlmann O, Steinmetz WE, Mao XA, Wuelfing WP, Templeton AC, Murray RW, Johnson CS (2001) J Phys Chem B 105:8801–8809

    Article  CAS  Google Scholar 

  59. Nidumolu BG, Urbina MC, Hormes J, Kumar C, Monroe WT (2006) Biotechnol Prog 22:91–95

    Article  CAS  Google Scholar 

  60. Yoo BK, Joo SW (2007) J Colloid Interface Sci 311:491–496

    Article  CAS  Google Scholar 

  61. Shi D, He P (2004) Rev Adv Mater Sci 7:97–107

    CAS  Google Scholar 

  62. Ren SF, Zhang L, Cheng ZH, Guo YL (2005) J Am Soc Mass Spectrom 16:333–339

    Article  CAS  Google Scholar 

  63. Chen WY, Wang LS, Chiu HT, Chen YC, Lee CY (2004) J Am Soc Mass Spectrom 15:1629–1635

    Article  CAS  Google Scholar 

  64. Ugarov MV, Egan T, Khabashesku DV, Schultz JA, Peng H, Khabashesku VN, Furutani H, Prather KS, Wang H-WJ, Jackson SN, Woods AS (2004) Anal Chem 76:6734–6742

    Article  CAS  Google Scholar 

  65. Xu S, Li Y, Zou H, Qiu J, Guo Z, Guo B (2003) Anal Chem 75:6191–6195

    Article  CAS  Google Scholar 

  66. Najam-ul-Haq M, Rainer M, Schwarzenauer T, Huck CW, Bonn GK (2006) Anal Chim Acta 561:32–39

    Article  CAS  Google Scholar 

  67. Male KB, Li J, Bun CC, Ng S-C, Luong JHT (2008) J Phys Chem C 112:443–451

    Article  CAS  Google Scholar 

  68. Li J, Vergne MJ, Mowles ED, Zhong WH, Hercules DM, Lukehart CM (2005) Carbon 43:2883–2893

    Article  CAS  Google Scholar 

  69. Lee J, Yang J, Ko H, Oh SJ, Kang J, Son JH, Lee K, Lee SW, Yoon HG, Suh JS, Huh YM, Haam S (2008) Adv Funct Mater 18:258–264

    Article  CAS  Google Scholar 

  70. Ago H, Kugler T, Cacialli F, Salaneck WR, Shaffer MSP, Windle AH, Friend RH (1999) J Phys Chem B 103:8116–8121

    Article  CAS  Google Scholar 

  71. Holzinger M, Abraham J, Whelan P, Graupner R, Ley L, Hennrich F, Kappes M, Hirsch A (2003) J Am Chem Soc 125:8566–8580

    Article  CAS  Google Scholar 

  72. Kumar A, Mandal S, Selvakannan PR, Pasricha R, Mandale AB, Sastry M (2003) Langmuir 19:6277–6282

    Article  CAS  Google Scholar 

  73. Bruce IJ, Sen T (2005) Langmuir 21:7029–7035

    Article  CAS  Google Scholar 

  74. del Campo A, Sen T, Lellouche J-P, Bruce IJ (2005) J Magn Mater 293:33–40

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Shandong University, St. Jude Children’s Research Hospital and the American Lebanese Syrian Associated Charities (ALSAC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Yan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, B., Yan, B. Analytical strategies for characterizing the surface chemistry of nanoparticles. Anal Bioanal Chem 396, 973–982 (2010). https://doi.org/10.1007/s00216-009-2996-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-2996-1

Keywords

Navigation