Skip to main content
Log in

The size distribution of 'gold standard' nanoparticles

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The spherical gold nanoparticle reference materials RM 8011, RM 8012, and RM 8013, with a nominal radius of 5, 15, and 30 nm, respectively, have been available since 2008 from NIST. These materials are recommended as standards for nanoparticle size measurements and for the study of the biological effects of nanoparticles, e.g., in pre-clinical biomedical research. We report on determination of the size distributions of these gold nanoparticles using different small-angle X-ray scattering (SAXS) instruments. Measurements with a classical Kratky type SAXS instrument are compared with a synchrotron SAXS technique. Samples were investigated in situ, positioned in capillaries and in levitated droplets. The number-weighted size distributions were determined applying model scattering functions based on (a) Gaussian, (b) log-normal, and (c) Schulz distributions. The mean radii are 4.36 ± 0.04 nm (RM 8011), 12.20 ± 0.03 nm (RM 8012), and 25.74 ± 0.27 nm (RM 8013). Low polydispersities, defined as relative width of the distributions, were detected with values of 0.067 ± 0.006 (RM 8011), 0.103 ± 0.003, (RM 8012), and 0.10 ± 0.01 (RM 8013). The results are in agreement with integral values determined from classical evaluation procedures, such as the radius of gyration (Guinier) and particle volume (Kratky). No indications of particle aggregation and particle interactions—repulsive or attractive—were found. We recommend SAXS as a standard method for a fast and precise determination of size distributions of nanoparticles.

A suspension of gold nanoparticles with a nominal diameter of 10 nm is positioned in a trap (acoustic levitator) for SAXS analysis with synchrotron radiation (droplet diameter is 2 mm). The measured scattering intensities (black line in right hand figure) are interpreted in terms of model functions (red line) for precise determination of the particles’ size distribution. Thank you.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. ISO (2008) International Organization for Standardization: ISO/TS 27687:2008(E)

  2. Horn D, Rieger J (2001) Angew Chem Int Ed 40:4331

    Article  Google Scholar 

  3. Huber DL (2005) Small 1:482

    Article  CAS  Google Scholar 

  4. Nikolic MS, Krack M, Aleksandrovic V, Kornowski A, Forster S, Weller H (2006) Angew Chem Int Ed 45:6577

    Article  CAS  Google Scholar 

  5. Thorek DLJ, Chen A, Czupryna J, Tsourkas A (2006) Ann Biomed Eng 34:23

    Article  Google Scholar 

  6. Kaufner L, Cartier R, Wustneck R, Fichtner I, Pietschmann S, Bruhn H, Schutt D, Thunemann AF, Pison U (2007) Nanotechnology 18:115710

    Article  Google Scholar 

  7. Thunemann AF, Beyermann J, Kukula H (2000) Macromolecules 33:5906

    Article  Google Scholar 

  8. Ferrari M (2005) Nat Rev Cancer 5:161

    Article  CAS  Google Scholar 

  9. Muller RH, Runge SA, Ravelli V, Thunemann AF, Mehnert W, Souto EB (2008) Eur J Pharm Biopharm 68:535

    Article  CAS  Google Scholar 

  10. Shi XY, Wang SH, Swanson SD, Ge S, Cao ZY, Van Antwerp ME, Landmark KJ, Baker JR (2008) Adv Mater 20:1671

    Article  CAS  Google Scholar 

  11. Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T (2008) Nature Methods 5:763

    Article  CAS  Google Scholar 

  12. Schwartzberg AM, Zhang JZ (2008) J Phys Chem C 112:10323

    Article  CAS  Google Scholar 

  13. Nel AE, Madler L, Velegol D, Xia T, Hoek EMV, Somasundaran P, Klaessig F, Castranova V, Thompson M (2009) Nature Materials 8:543

    Article  CAS  Google Scholar 

  14. Hurt RH, Monthioux M, Kane A (2006) Carbon 44:1028

    Article  CAS  Google Scholar 

  15. Nel A, Xia T, Madler L, Li N (2006) Science 311:622

    Article  CAS  Google Scholar 

  16. Buzea C, Pacheco II, Robbie K (2007) Biointerphases 2:Mr17

  17. Chen Z, Meng H, Xing G, Chen C, Zhao Y, Jia G, Wang T, Yuan H, Ye C, Zhao F, Chai Z, Zhu C, Fang X, Ma B, Wan L (2006) Toxicol Lett 163:109

    Article  CAS  Google Scholar 

  18. Elder A, Yang H, Gwiazda R, Teng X, Thurston S, He H, Oberdorster G (2007) Adv Mater 19:3124

    Article  CAS  Google Scholar 

  19. Xia T, Kovochich M, Liong M, Madler L, Gilbert B, Shi HB, Yeh JI, Zink JI, Nel AE (2008) Acs Nano 2:2121

    Article  CAS  Google Scholar 

  20. Schulze C, Kroll A, Lehr CM, Schafer UF, Becker K, Schnekenburger J, Isfort CS, Landsiedel R, Wohlleben W (2008) Nanotoxicology 2:51

    Article  CAS  Google Scholar 

  21. Reiners G (2009) Nanoscaled reference materials; cooperation with ISO/TC 229 nanotechnologies: www.nano-refmat.bam.de.

  22. Baum M (2008) NIST reference materials: http://www.nist.gov/msel/ceramics/gold-standard.cfm

  23. Frens G (1973) Nature-Physical Science 241:20

    CAS  Google Scholar 

  24. Stribeck N (2006) X-ray scattering of soft matter. Springer

  25. Glatter O, Kratky O (1982) Small angle X-ray scattering. Academic, London

    Google Scholar 

  26. Mylonas E, Svergun DI (2007) J Appl Crystallogr 40:S245

    Article  CAS  Google Scholar 

  27. Ilavsky J, Allen AJ, Long GG, Jemian PR (2002) Rev Sci Instrum 73:1660

    Article  CAS  Google Scholar 

  28. Leiterer J, Delissen F, Emmerling F, Thunemann AF, Panne U (2008) Analytical and Bioanalytical Chemistry 391:1221

    Article  CAS  Google Scholar 

  29. Delissen F, Leiterer J, Bienert R, Emmerling F, Thunemann AF (2008) Analytical and Bioanalytical Chemistry 392:161

    Article  CAS  Google Scholar 

  30. Siemann U, Ruland W (1982) Colloid Polym Sci 260:999

    Article  CAS  Google Scholar 

  31. Ruland W (2001) Carbon 39:323

    Article  CAS  Google Scholar 

  32. Janosi A (1986) Z Phys B-Condens Matter 63:375

    Article  Google Scholar 

  33. Pedersen JS (1997) Adv Colloid and Interface Sci 70:171

    Article  CAS  Google Scholar 

  34. Colombi P, Agnihotri DK, Asadchikov VE, Bontempi E, Bowen DK, Chang CH, Depero LE, Farnworth M, Fujimoto T, Gibaud A, Jergel M, Krumrey M, Lafford TA, Lamperti A, Ma T, Matyi RJ, Meduna M, Milita S, Sakurai K, Shabel'nikov L, Ulyanenkov A, Van der Lee A, Wiemer C (2008) J Appl Crystallogr 41:143

    Article  CAS  Google Scholar 

  35. Matyi RJ, Depero LE, Bontempi E, Colombi P, Gibaud A, Jergel M, Krumrey M, Lafford TA, Lamperti A, Meduna M, Van der Lee A, Wiemer C (2008) Thin Solid Films 516:7962

    Article  CAS  Google Scholar 

  36. Kline SR (2006) J Appl Crystallogr 39:895

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas F. Thünemann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bienert, R., Emmerling, F. & Thünemann, A.F. The size distribution of 'gold standard' nanoparticles. Anal Bioanal Chem 395, 1651–1660 (2009). https://doi.org/10.1007/s00216-009-3049-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-3049-5

Keywords

Navigation