Skip to main content
Log in

Electrochemical evaluation and determination of antiretroviral drug fosamprenavir using boron-doped diamond and glassy carbon electrodes

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Fosamprenavir is a pro-drug of the antiretroviral protease inhibitor amprenavir and is oxidizable at solid electrodes. The anodic oxidation behavior of fosamprenavir was investigated using cyclic and linear sweep voltammetry at boron-doped diamond and glassy carbon electrodes. In cyclic voltammetry, depending on pH values, fosamprenavir showed one sharp irreversible oxidation peak or wave depending on the working electrode. The mechanism of the oxidation process was discussed. The voltammetric study of some model compounds allowed elucidation of the possible oxidation mechanism of fosamprenavir. The aim of this study was to determine fosamprenavir levels in pharmaceutical formulations and biological samples by means of electrochemical methods. Using the sharp oxidation response, two voltammetric methods were described for the determination of fosamprenavir by differential pulse and square-wave voltammetry at the boron-doped diamond and glassy carbon electrodes. These two voltammetric techniques are 0.1 M H2SO4 and phosphate buffer at pH 2.0 which allow quantitation over a 4 × 10−6 to 8 × 10−5 M range using boron-doped diamond and a 1 × 10−5 to 1 × 10−4 M range using glassy carbon electrodes, respectively, in supporting electrolyte. All necessary validation parameters were investigated and calculated. These methods were successfully applied for the analysis of fosamprenavir pharmaceutical dosage forms, human serum and urine samples. The standard addition method was used in biological media using boron-doped diamond electrode. No electroactive interferences from the tablet excipients or endogenous substances from biological material were found. The results were statistically compared with those obtained through an established HPLC-UV technique; no significant differences were found between the voltammetric and HPLC methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sweetman SC (2005) The complete drug reference, Martindale, 34th edn. Pharmaceutical Press, Suffolk

    Google Scholar 

  2. Weiss J, Rose J (2000) J Antimicrobial Chemotherapy 59:238–245

    Article  Google Scholar 

  3. Lexiva® US prescribing information (2008) GlaxoSmithKline

  4. Rebiere H, Mazel B, Civade C, Bonnet PA (2007) J Chromatogr A 850:376–383

    CAS  Google Scholar 

  5. Mahmoud KA, Luong JH (2008) Anal Chem 80:7056–7062

    Article  CAS  Google Scholar 

  6. Ter Heine R, Davids M, Rosing H, Van Gorp ECM, Mulder JW, Van der Heide YT, Beijnen JH, Huitema ADR (2009) J Chromatogr B 877:575–580

    Article  Google Scholar 

  7. D’Avolio A, Siccardi M, Sciandra M, Lorena B, Bonora S, Trentini L, Di Perri G (2007) J Chromatogr B 859:234–240

    Article  Google Scholar 

  8. Dickinson L, Robinson L, Tjia J, Khoo S, Back D (2005) J Chromatogr B 829:82–90

    Article  CAS  Google Scholar 

  9. Colombo S, Beguin A, Telenti A, Biollaz J, Buclin T, Rochat B, Decosterd LA (2005) J Chromatogr B 819:259–276

    Article  CAS  Google Scholar 

  10. Pereira SA, Kenney KB, Cohen MS, Eron JJ, Tidwella RR, Dunn JA (2002) J Chromatogr B 766:307–317

    Article  CAS  Google Scholar 

  11. Verbesselt R, Van Wijngaerden E, De Hoon J (2007) J Chromatogr B 845:51–60

    Article  CAS  Google Scholar 

  12. Keil K, Frerichs VA, DiFrancesco R, Morse G (2003) Ther Drug Monit 25:340–346

    Article  CAS  Google Scholar 

  13. Justesen US, Pedersen C, Klitgaard A (2003) J Chromatogr B 783:491–500

    Article  CAS  Google Scholar 

  14. Turner ML, Reed-Walker K, King JR, Acosta EP (2003) J Chromatogr B 784:331–341

    Article  CAS  Google Scholar 

  15. Dailly E, Thomas L, Kergueris MF, Jolliet P, Bourin M (2001) J Chromatogr B 758:129–135

    Article  CAS  Google Scholar 

  16. Sarasa-Nacenta M, Lopez-Pua Y, Mallolas J, Luis Blanco J, Gatell JM, Carne X (2001) J Chromatogr B 757:325–332

    Article  CAS  Google Scholar 

  17. Wang J (1996) Electroanalytical techniques in clinical chemistry and laboratory medicine. VCH, New York

    Google Scholar 

  18. Kissinger PT, Heineman WR (1996) Laboratory techniques in electroanalytical chemistry, 2nd edn. Marcel Dekker, New York

    Google Scholar 

  19. Gosser DK (1993) Cyclic voltammetry, simulation and analysis of reaction mechanism. VCH, New York

    Google Scholar 

  20. Kauffmann JM, Vire JC (1993) Anal Chim Acta 273:329–334

    Article  CAS  Google Scholar 

  21. Smyth MR, Vos JG (1992) Analytical voltammetry. Elsevier, Amsterdam

    Google Scholar 

  22. Uslu B, Ozkan SA (2007) Anal Lett 40:817–853

    Article  CAS  Google Scholar 

  23. Yardımcı C, Özaltın N (2001) Analyst 126:361–366

    Article  Google Scholar 

  24. Ozkan SA, Uslu B, Aboul-Enein HY (2003) Crit Rev Anal Chem 33:155–181

    Article  Google Scholar 

  25. Uslu B, Ozkan SA (2007) Comb Chem High Through Screen 10:495–513

    Article  CAS  Google Scholar 

  26. Dogan-Topal B, Uslu B, Ozkan SA, Zuman P (2008) Anal Chem 80:209–216

    Article  Google Scholar 

  27. Goeting CH, Jones F, Foord JS, Eklund JC, Marken F, Compton RC, Chalker PR, Johnston C (1998) J Electroanal Chem 442:207–216

    Article  CAS  Google Scholar 

  28. Peleskov YV (2002) Russian J Electrochemistry 38:1275–1291

    Article  Google Scholar 

  29. Lawrence NS, Pagels M, Meredith A, Jones TGJ, Hall CE, Pickles CSJ, Godfried HP, Banks CE, Compton RG, Jiang L (2006) Talanta 69:829–834

    Article  CAS  Google Scholar 

  30. Compton RG, Foord JS, Marken F (2003) Electroanalysis 15:1349–1363

    Article  CAS  Google Scholar 

  31. Rao TN, Fujishima A (2000) Diamond and Related Materials 9:384–389

    Article  CAS  Google Scholar 

  32. Fortin E, Chane-Tune J, Delabouglise D, Bouvier P, Livache T, Mailley P, Marcus B, Mermoux M, Petit JP, Szunerits S, Vieil E (2005) Electroanal 17:517–526

    Article  CAS  Google Scholar 

  33. Goeting CH, Marken F, Gutierrez-Sosa A, Compton RG, Foord JS (2000) Diamond and Related Materials 9:390–396

    Article  CAS  Google Scholar 

  34. Riley CM, Rosanske TM (1996) Development and validation of analytical methods. Elsevier, New York

    Google Scholar 

  35. Swartz ME, Krull IS (1997) Analytical method development and validation. Marcel Dekker, New York

    Google Scholar 

  36. Ermer J, JHMcB M (2005) Method validation in pharmaceutical analysis. Weinheim, Wiley VCH

    Book  Google Scholar 

  37. De Bievre P, Gunzler H (2005) Validation in chemical measurements. Springer, Berlin

    Book  Google Scholar 

  38. Marcus Y (1989) J Chem Soc Faraday Trans 85:381–388

    Article  CAS  Google Scholar 

  39. Gran G (1952) Analyst 7:661–671

    Article  Google Scholar 

  40. Beltrán JL, Codony R, Prat MD (1993) Anal Chim Acta 276:441–454

    Article  Google Scholar 

  41. Laviron E, Roullier L, Degrand C (1980) J Electroanal Chem 112:11–23

    Article  CAS  Google Scholar 

  42. Goyal RN, Gupta VK, Oyama M, Bachheti N (2006) Electrochem Commun 8:65–70

    Article  CAS  Google Scholar 

  43. Goyal RN, Jein N, Gurnani V (2001) Monatsh Chem 132:575–585

    Article  CAS  Google Scholar 

  44. Hart JP (1990) Electroanalysis of biologically important compounds. Horwood, England

    Google Scholar 

  45. Vire JC, Kauffmann JM (1994) Curr Top Electrochem 3:493–515

    CAS  Google Scholar 

  46. Suzen S, Demircigil BT, Buyukbingol E, Ozkan SA (2003) New J Chem 27:1007–1011

    Article  Google Scholar 

  47. Grimshaw J (2000) Electrochemical reactions and mechanism in organic chemistry. Elsevier, New York

    Google Scholar 

  48. Bermejo E, Zapardiel A, Perez-Lopez JA, Chicharro M, Sanchez A, Hernandez L (2000) J Electroanal Chem 481:52–61

    Article  CAS  Google Scholar 

  49. Ozkan SA, Uslu B, Senturk Z (2004) Electroanalysis 16:231–237

    Article  Google Scholar 

  50. Demircigil BT, Uslu B, Ozkan Y, Ozkan SA, Sentürk Z (2003) Electroanalysis 15:230–234

    Article  CAS  Google Scholar 

  51. Moane S, Barreira Rodriguez JR, Miranda Ordieres AJ, Tunon Blanco P, Smyth MR (1995) J Pharm Biomed Anal 14:57–63

    Article  CAS  Google Scholar 

  52. Sharma LR, Kalia RK (1976) Electrochim Acta 21:1085–1087

    Article  CAS  Google Scholar 

  53. Mc Grath GJ, O’Kane E, Smyth WF, Tagliaro F (1996) Anal Chim Acta 322:159–166

    Article  CAS  Google Scholar 

  54. Wang Z, Zhang H, Zhou S, Dong W (2001) Talanta 53:1133–1138

    Article  CAS  Google Scholar 

  55. Lund H, Hammerich O (2001) Organic electrochemistry, 4th edn. Marcel Dekker, New York

    Google Scholar 

Download references

Acknowledgments

This work was realized the BAS 100 W equipment which is supplied from Ankara University Scientific Research Foundation Projects (Grant No: 20030803037 and 20030803043). We are grateful to Dr. Jose Luis Beltran from University of Barcelona for the STAR program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sibel A. Ozkan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gumustas, M., Ozkan, S.A. Electrochemical evaluation and determination of antiretroviral drug fosamprenavir using boron-doped diamond and glassy carbon electrodes. Anal Bioanal Chem 397, 189–203 (2010). https://doi.org/10.1007/s00216-009-3334-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-3334-3

Keywords

Navigation