Skip to main content
Log in

Chromium speciation in solid matrices and regulation: a review

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In recent years, the extensive use of chromium in industrial processes has led to the promotion of several directives and recommendations by the European Union, that try to limit and regulate the presence of Cr(VI) in the environment and to protect industrial workers using chromium and end-users of manufactured products. As a consequence, new standard methods and analytical procedures have been published at the EU level for Cr(VI) determination in soil, sludge, sediment, and similar waste materials, workplace atmospheres, cement, packaging materials, industrially produced samples, and corrosion-protection layers on some components of vehicles and electrical and electronic equipment. The objective of this article is to summarize the different directives and recommendations and to critically review the currently existing standard methods and the methods published in the literature for chromium speciation in the above mentioned solid matrices, putting the emphasis on the different extraction procedures which have been developed for each matrix. Particular attention has been paid to Cr(III) and Cr(VI) inter-conversions that can occur during extraction and efforts to minimize these unwanted reactions. Although the use of NaOH-Na2CO3 solutions with hot plate extraction seems to be the more widespread procedure, species transformation can still occur and several studies suggest that speciated isotope-dilution mass spectrometry (SIDMS) could be a suitable tool for correction of these interconversions. Besides, recent studies have proved the role of Cr(III) in chromium toxicology. As a consequence, the authors suggest an update of standard methods in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hansen MB, Johansen JD, Menne T (2003) Contact Dermatitis 49:206–212

    Article  CAS  Google Scholar 

  2. Eastmond DA, MacGregor JT, Slesinski RS (2008) Crit Rev Toxicol 38:173–190

    Article  CAS  Google Scholar 

  3. Agency for Toxic Substances and Disease Registry (ATSDR) (1998) Toxicological Profile for Chromium, US Department of Hearth and Human Services, Public Health Service, Atlanta, GA, USA

  4. USEPA (1998) Toxicological Review of Hexavalent Chromium. U.S. Government Printing Office, Washington

    Google Scholar 

  5. IARC (1990) Monographs on the Evaluation of Carcinogenic Risks to Humans, vol 49. Chromium, Nickel and Welding, International Agency for Cancer Research, Lyon

    Google Scholar 

  6. Kotas J, Stasicka Z (2000) Environ Pollut 107:263–283

    Article  CAS  Google Scholar 

  7. Eary LE, Rai D (1987) Environ Sci Technol 21:1178–1184

    Article  CAS  Google Scholar 

  8. Pettine M, Capri S (2005) Anal Chim Acta 540:231–238

    Article  CAS  Google Scholar 

  9. Richard FC, Bourg ACM (1991) Water Res 25:807–816

    Article  CAS  Google Scholar 

  10. James BR, Petura JC, Vitale RJ, Mussoline GR (1995) Environ Sci Technol 29:2377–2381

    Article  CAS  Google Scholar 

  11. USEPA (1995) Chromium, Hexavalent (Colorimetric), Method 7196A, in Test Methods for Evaluating Solid Waste-Physical/Chemical Methods, SW-846, update 3. U.S. Government Printing Office, Washington

    Google Scholar 

  12. USEPA (1996) Determination of hexavalent chromium in drinking water, groundwater and industrial wastewater effluents by ion-chromatography, Method 7199A, in Test Methods for Evaluating Solid Waste-Physical/Chemical Methods, SW-846, update 3. U.S. Government Printing Office, Washington

    Google Scholar 

  13. Tirez K, Scharf H, Calzolari D, Cleven R, Kisser M, Luck D (2007) J Environ Monit 9:749–759

    Article  CAS  Google Scholar 

  14. Grabarczyk M, Korolczuk M, Tyszczuk K (2006) Anal Bioanal Chem 386:357–362

    Article  CAS  Google Scholar 

  15. Grabarczyk M (2008) Anal Bioanal Chem 390:979–986

    Article  CAS  Google Scholar 

  16. Grabarczyk M (2008) J Hazard Mater 158:491–498

    Article  CAS  Google Scholar 

  17. Grabarczyk M (2008) Electroanalysis 20:1857–1862

    Article  CAS  Google Scholar 

  18. Khmiri A, Samet B (2009) Adv Cem Res 21:39–44

    Article  CAS  Google Scholar 

  19. Ndung’u K, Djane N-K, Malcus F, Mathiasson L (1999) Analyst 124:1367–1372

    Article  Google Scholar 

  20. Milacic R, Scancar J (2000) Analyst 125:1938–1942

    Article  CAS  Google Scholar 

  21. Scancar J, Milacic R (2002) Analyst 127:629–633

    Article  CAS  Google Scholar 

  22. Potgieter SS, Panichev N, Potgieter JH, Panicheva S (2003) Cem Concr Res 2364

  23. Panichev N, Mandiwana K, Foukaridis G (2003) Anal Chim Acta 491:81–89

    Article  CAS  Google Scholar 

  24. Scancar J, Milacic R, Séby F, Donard OFX (2005) J Anal At Spectrom 20:871–875

    Article  CAS  Google Scholar 

  25. Goldoni M, Caglieri A, Poli D, Vettori MV, Corradi M, Apostoli P, Mutti A (2006) Anal Chim Acta 562:229–235

    Article  CAS  Google Scholar 

  26. Mandiwana KL, Panichev N, Resane T (2006) J Hazard Mater 136:379–382

    Article  CAS  Google Scholar 

  27. Long X, Miro M, Hansen EH (2006) Analyst 131:132–140

    Article  CAS  Google Scholar 

  28. Mandiwana KL, Panichev N, Kataeva M, Siebert S (2007) J Hazard Mater 147:540–545

    Article  CAS  Google Scholar 

  29. Scancar J, Zupancic M, Milacic R (2007) Water Air, Soil Pollut 185:121–129

    Article  CAS  Google Scholar 

  30. Mandiwana KL (2008) Talanta 74:736–740

    Article  CAS  Google Scholar 

  31. Narukawa T, Riley KW, French DH, Chiba K (2007) Talanta 73:178–184

    Article  CAS  Google Scholar 

  32. Marques MJ, Salvador A, Morales-Rubio A, de la Guardia M (2000) Fresenius J Anal Chem 367:601–613

    Article  CAS  Google Scholar 

  33. Cornelis R, Caruso J, Heumann KG (2003) Handbook of elemental speciation: techniques and methodology. Wiley, Chichester

    Book  Google Scholar 

  34. Barnowski C, Jakubowski N, Stuewer D, Broekaert JAC (1997) J Anal At Spectrom 12:1155–1161

    Article  CAS  Google Scholar 

  35. Tirez K, Brusten W, Cluyts A, Patyn J, De Brucker N (2003) J Anal At Spectrom 18:922–932

    Article  CAS  Google Scholar 

  36. Rahman GMM, Kingston HMS, Towns TG, Vitale RJ, Clay KR (2005) Anal Bioanal Chem 382:1111–1120

    Article  CAS  Google Scholar 

  37. Vassileva E (2001) Analusis 28:878–884

    Article  Google Scholar 

  38. Séby F, Charles S, Gagean M, Garraud H, Donard OFX (2003) J Anal At Spectrom 18:1386–1390

    Article  CAS  Google Scholar 

  39. Andrle CM, Jakubowski N, Broekaert JAC (1997) Spectrochim Acta Part B 52B:189–200

    Article  CAS  Google Scholar 

  40. Vanhaecke F, Saverwyns S, De Wannemacker G, Moens L, Dams R (2000) Anal Chim Acta 419:55–64

    Article  CAS  Google Scholar 

  41. Hagendorfer H, Goessler W (2008) Talanta 76:656–661

    Article  CAS  Google Scholar 

  42. Huo D, Lu Y, Kingston HM (1998) Environ Sci Technol 32:3418–3423

    Article  CAS  Google Scholar 

  43. Huo D, Kingston HM (2000) Anal Chem 72:5047–5054

    Article  CAS  Google Scholar 

  44. Coedo AG, Dorado T, Padilla I, Alguacil FJ (2000) J Anal At Spectrom 15:1564–1568

    Article  CAS  Google Scholar 

  45. Dermatas D, Moon D (2006) Environ Eng Sci 23:77–87

    CAS  Google Scholar 

  46. Zachara J, Ainsworth C, Brown G, Catalano J, McKinley J, Qafoku O, Smith S, Szecsody J, Traina S, Warner J (2004) Geochim Cosmochim Ac 68:13–30

    Article  CAS  Google Scholar 

  47. Anandan C, William Grips V, Rajam K, Jayaram V, Bera P (2002) Appl Surf Sci 191:254–260

    Article  CAS  Google Scholar 

  48. Jeffcoate C, Isaacs H, Aldykiewicz A, Ryan M (2000) J Electrochem Soc 147:540–547

    Article  CAS  Google Scholar 

  49. Pappert E, Flock J, Broeckaert JA (1999) Spectrochim Acta Part B 54:299–310

    Article  Google Scholar 

  50. Aubriet F, Maunit B, Muller J (2001) Int J Mass Spectrom 209:5–21

    Article  CAS  Google Scholar 

  51. Aubriet F, Maunit B, Courrier B, Muller J (1997) Rapid Commun Mass Spectrom 11:1596–1601

    Article  CAS  Google Scholar 

  52. Aubriet F, Poleunis C, Bertrand P (2001) J Mass Spectrom 36:641–651

    Article  CAS  Google Scholar 

  53. Robertson-Honecker J, Zhang N, Pavkovich A, King F (2008) J Anal At Spectrom 23:1508–1517

    Article  CAS  Google Scholar 

  54. Matsumoto K, Matsunami A, Oyama H, Kitagawa K (2005) Microchem J j81:195–200

    Article  CAS  Google Scholar 

  55. Malherbe J, Fernandez B, Martinez H, Panjan P, Donard O (2008) J Anal At Spectrom 23:1378–1387

    Article  CAS  Google Scholar 

  56. Asteman H, Norling R, Svensson J, Nylund A, Nyborg L (2002) Surf Interface Anal 34:234–238

    Article  CAS  Google Scholar 

  57. Zhang X, Sloof W, Hovestad A, Van Westing E, Terryn H, de Wit J (2005) Surf Coat Tech 197:168–176

    Article  CAS  Google Scholar 

  58. Escobar Galindo R, Forniès E, Gago R, Albella J (2007) J Anal At Spectrom 22:1512–1516

    Article  CAS  Google Scholar 

  59. Kikuchi S, Yagishita T (2005) Anal Sci 21:197–198

    Article  CAS  Google Scholar 

  60. Swedish Environmental Protection Agency (2002) Guidelines for polluted soils. Stockholm, Sweden

    Google Scholar 

  61. Ministero dell’Ambiente della Republica Italiana (1999) Decreto Ministeriale n. 471, Gazzeta Ufficiale Supplemento Ordinario N. 293, Rome, Italy

  62. Luque-Garcia JL, Luque de Castro MD (2002) Analyst 127:1115–1120

    Article  CAS  Google Scholar 

  63. Morales-Munoz S, Luque-Garcia JL, Luque de Castro MD (2004) Anal Chim Acta 515:343–348

    Article  CAS  Google Scholar 

  64. USEPA (1995) Alkaline Digestion of Hexavalent Chromium, Method 3060A, in Test Methods for Evaluating Solid Waste - Physical/Chemical Methods, SW-846, update 3. Government Printing Office, Washington

    Google Scholar 

  65. EN15192 (2006) Characterization of waste and soil. Determination of Chromium(VI) in solid material by alkaline digestion and ion chromatography with spectrophotometric detection

  66. Kingston HM, Huo D, Lu Y, Chalk S (1998) Spectrochim Acta, Part B 53B:299–309

    Article  CAS  Google Scholar 

  67. Ashley K, Howe AM, Demange M, Nygren O (2003) J Environ Monit 5:707–716

    Article  CAS  Google Scholar 

  68. Occupational Safety and Health Administration (OSHA) (1998) Analytical methods manual, method ID-215. Hexavalent chromium in workplace atmospheres. OSHA, Salt Lake City

    Google Scholar 

  69. National Institute for Occupational Safety and Health (NIOSH) (1994) Manual of Analytical Methods Method No. 7604, Chromium, Hexavalent, NIOSH, Cincinnati, OH, USA

  70. American Conference of Governmental Industrial Hygienists (ACGIH) (2008) Threshold limit values for chemical substances and physical agents & biological exposure indices. ACGIH, Cincinnati

    Google Scholar 

  71. Vahčič M, Milačič R, Mladenovič A, Murko S, Zuliani T, Zupančič M, Ščančar J (2008) Waste Manag 28:2667–2674

    Article  CAS  Google Scholar 

  72. ISO (2005) ISO 16740, Workplace air - Determination of Hexavalent Chromium in Airborne Particulate Matter - Method by Ion Chromatography and Spectrophotometric Measurement using Diphenylcarbazide. ISO, Geneva

    Google Scholar 

  73. National Institute for Occupational Safety and Health (NIOSH) (2003) Manual of Analytical Methods Method No. 7605, Hexavalent Chromium by Ion Chromatography, NIOSH, Cincinnati, OH, USA

  74. National Institute for Occupational Safety and Health (NIOSH) (2003) Manual of Analytical Methods Method No. 7703, Hexavalent Chromium by Field-Portable Spectrophotometry, NIOSH, Cincinnati, OH, USA

  75. Kingston HM, Cain R, Huo D, Rahman GMM (2005) J Environ Monit 7:899–905

    Article  CAS  Google Scholar 

  76. Milacic R, Scancar J, Tusek J (2002) Anal Bioanal Chem 372:549–553

    Article  CAS  Google Scholar 

  77. Ashley K, Applegate GT, Marcy AD, Drake PL, Pierce PA, Carabin N, Demange M (2009) J Environ Monit 11:318–325

    Article  CAS  Google Scholar 

  78. The Council of the European Union (2003) European Directive 2003/53/EC amending for the 26th time Council Directive 76/769/EEC relating to restrictions on the marketing and use of certain dangerous substances and preparations (nonylphenol, nonylphenol ethoxylate and cement), No. L178/24, Aberdeen, UK

  79. Federal Institute for Occupational Safety and Health of Germany (2002) Industrial regulations for hazardous materials TRGS-613. Dortmund, Germany

    Google Scholar 

  80. European Committee for Standardization (CEN) (2006) EN196-10 Methods of testing cement - Part 10: Determination of the water soluble chromium (VI) content of cement. CEN, Brussels

    Google Scholar 

  81. The Council of the European Union (1994) European Directive 1994/62/EC on Packaging and Packaging waste. Official Journal of European Communities No. L365, Aberdeen

    Google Scholar 

  82. ICG/TC2 (2001) Glass Technol 42:148–152

    Google Scholar 

  83. Kim KC, Park YB, Lee MJ, Kim JB, Huh JW, Kim DH, Lee JB, Kim JC (2008) Food Res Int 41:411–418

    Article  CAS  Google Scholar 

  84. The Council of the European Union (2002) European Directive 2002/95/EC on the restriction of the use of certain hazardous substances in electrical and electronic equipment. Official Journal of European Communities, Aberdeen

    Google Scholar 

  85. The Council of the European Union (2000) European Directive 2000/53/EC on end-of life vehicles. Official Journal of European Communities, Aberdeen

    Google Scholar 

  86. Zentral Verband Oberlächentechik ZVO (German Suppliers Association). Qualitative Cr (VI) Determination of chromated coatings on structural units using spot test. ZVO-0102-QUA-02e Status 02

  87. European Committee for Standardization (CEN) (2006) EN 15205 Determination of hexavalent chromium in corrosion protection layers — Qualitative analysis. CEN, Brussels

    Google Scholar 

  88. ISO (1995) EN ISO 3613 Chromate conversion coatings on zinc and cadmium. Test methods. ISO, Geneva

    Google Scholar 

  89. Séby F, Castetbon A, Ortega R, Guimon C, Niveau F, Barrois-Oudin N, Garraud H, Donard OFX (2008) Anal Bioanal Chem 391:587–597

    Article  CAS  Google Scholar 

  90. Hua L, Chan YC, Wu YP, Wu BY (2009) J Hazard Mater 163:1360–1368

    Article  CAS  Google Scholar 

  91. Pourbaix M (1964) Atlas d’équilibres électrochimiques à 25 °C, Paris (France)

  92. Bartlett RJ (1991) Environ Health Perspect 92:17–24

    Article  CAS  Google Scholar 

  93. European Committee for Standardization (CEN) (2006) EN 15192 Determination of Chromium(VI) in solid material by alkaline digestion and ion chromatography with spectrophotometric detection. CEN, Brussels

    Google Scholar 

  94. British Standard Institution (2003) PD CEN/TR 14589:2003. Characterization of waste. State of the art document. Chromium VI specification in solid matrices, Bristol, England

  95. Wang J, Ashley K, Marlow D, England EC, Carlton G (1999) Anal Chem 71:1027–1032

    Article  CAS  Google Scholar 

  96. Metze D, Herzog H, Gosciniak B, Gladtke D, Jakubowski N (2004) Anal Bioanal Chem 378:123–128

    Article  CAS  Google Scholar 

  97. Samanta G, Boring CB, Dasgupta PK (2001) Anal Chem 73:2034–2040

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Unceta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Unceta, N., Séby, F., Malherbe, J. et al. Chromium speciation in solid matrices and regulation: a review. Anal Bioanal Chem 397, 1097–1111 (2010). https://doi.org/10.1007/s00216-009-3417-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-3417-1

Keywords

Navigation