Skip to main content

Advertisement

Log in

In vitro and in vivo imaging with quantum dots

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Quantum dots (QDs), also named semiconductor nanocrystals, have initiated a new realm of bioscience by combining nanomaterials with biology, which will profoundly influence future biological and biomedical research. In this review, we describe the extraordinary optical properties of QDs and developments in methods for their synthesis. We focus on fluorescent imaging with QDs both in vitro and in vivo, and the cytotoxicity of QDs and potential barriers to their use in practical biomedical applications. Finally, we provide insights into improvements aimed at decreasing the cytotoxicity of QDs and the future outlook of QD applications in biomedical fields.

The unique tunable optical and chemical properties of QDs have been exploited in a growing array of biomedical applications including clinical diagnostics and molecular, cellular, and tumor imaging

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Medintz I, Uyeda H, Goldman E, Mattoussi H (2005) Nature Mater 4:435–446

    CAS  Google Scholar 

  2. Klostranec JM, Chan WCW (2006) Adv Mater 18:1953–1964

    CAS  Google Scholar 

  3. Henglein A (1989) Chem Rev 89:1861–1873

    CAS  Google Scholar 

  4. Alivisatos AP (1996) Science 271:933–937

    CAS  Google Scholar 

  5. Nirmal M, Brus L (1999) Acc Chem Res 32:407–414

    CAS  Google Scholar 

  6. Alivisatos AP (1997) Endeavour 21:56–60

    CAS  Google Scholar 

  7. Alivisatos AP, Barbara PF, Castleman AW, Chang J, Dixon DA, Klein ML, McLendon GL, Miller JS, Ratner MA, Rossky PJ, Stupp SI, Thompson ME (1998) Adv Mater 10:1297–1336

    Google Scholar 

  8. Smith AM, Gao X, Nie S (2004) Photochem Photobiol 80:377–385

    CAS  Google Scholar 

  9. Qu LH, Peng XG (2002) J Am Chem Soc 124:2049–2055

    CAS  Google Scholar 

  10. Zhong XH, Feng YY, Knoll W, Han MY (2003) J Am Chem Soc 125:13559–13563

    CAS  Google Scholar 

  11. Bailey RE, Nie SM (2003) J Am Chem Soc 125:7100–7106

    CAS  Google Scholar 

  12. Kim S, Fisher B, Eisler HJ, Bawendi M (2003) J Am Chem Soc 125:11466–11467

    CAS  Google Scholar 

  13. Wehrenberg BL, Wang CJ, Guyot-Sionnest P (2002) J Phys Chem B 106:10634–10640

    CAS  Google Scholar 

  14. Sukhanova A, Venteo L, Devy J, Artemyev M, Oleinikov V, Pluot M, Nabiev I (2002) Lab Invest 82:1259–1261

    Google Scholar 

  15. Sukhanova A, Devy J, Venteo L, Kaplan H, Artemyev M, Oleinikov V, Klinov D, Pluot M, Cohen JHM, Nabiev I (2004) Anal Biochem 324:60–67

    CAS  Google Scholar 

  16. Wargnier R, Baranov A, Maslov V, Stsiapura V, Artemyev M, Pluot M, Sukhanova A, Nabiev I (2004) Nano Lett 4:451–457

    CAS  Google Scholar 

  17. Wu XY, Liu HJ, Liu JQ, Haley KN, Treadway JA, Larson JP, Ge NF, Peale F, Bruchez MP (2003) Nat Biotechnol 21:41–46

    CAS  Google Scholar 

  18. Lidke DS, Nagy P, Heintzmann R, Arndt-Jovin DJ, Post JN, Grecco HE, Jares-Erijman EA, Jovin TM (2004) Nat Biotechnol 22:198–203

    CAS  Google Scholar 

  19. Medintz IL, Clapp AR, Mattoussi H, Goldman ER, Fisher B, Mauro JM (2003) Nat Mater 2:630–638

    CAS  Google Scholar 

  20. Peng X (2009) Nano Res 2:425–447

    CAS  Google Scholar 

  21. Efros AL (1982) Sov Phys Semicond 16:772–775

    Google Scholar 

  22. Ekimov AI, Onushchenko AA (1982) Sov Phys Semicond 16:775–778

    Google Scholar 

  23. Guo J, Yang W, Wang C (2005) J Phys Chem B 109:17467–17473

    CAS  Google Scholar 

  24. He Y, Lu HT, Sai LM, Lai WY, Fan QL, Wang LH, Huang W (2006) J Phys Chem B 110:13352–13356

    CAS  Google Scholar 

  25. Murray CB, Norris DJ, Bawendi MG (1993) J Am Chem Soc 115:8706–8715

    CAS  Google Scholar 

  26. Hines MA, Guyot-Sionnest P (1996) J Phys Chem 100:468–471

    CAS  Google Scholar 

  27. Murray XG, Norris DJ, Bawendi MG (1997) J Am Chem Soc 119:7019–7029

    Google Scholar 

  28. Dabbousi BO, Rodriguez-Viejo J, Mikulec FV, Heine JR, Mattoussi H, Ober R, Jensen KF, Bawendi MG (1997) J Phys Chem B 101:9463–9475

    CAS  Google Scholar 

  29. Tian YC, Newton T, Kotov NA, Guldi DM, Fendler JH (1996) J Phys Chem 100:8927–8939

    CAS  Google Scholar 

  30. Peng ZA, Peng X (2001) J Am Chem Soc 123:183–184

    CAS  Google Scholar 

  31. Hines MA, Guyot-Sionnest P (1998) J Phys Chem B 102:3655–3657

    CAS  Google Scholar 

  32. Peng X, Mann L, Wickham J, Kadvanish A, Alivisatos AP (2000) Nature 404:59

    CAS  Google Scholar 

  33. Nann T, Riegler J (2002) Chem Eur J 8:4791–4795

    CAS  Google Scholar 

  34. Talapin DV, Haubold S, Rogach AL, Kornowski A, Haase M, Weller H (2001) J Phys Chem B 105:2260–2263

    CAS  Google Scholar 

  35. Talapin DV, Rogach AL, Kornowski A, Haase M, Weller H (2001) Nano Lett 1:207–211

    CAS  Google Scholar 

  36. Qu L, Peng ZA, Peng XG (2002) Nano Lett 1:333–337

    Google Scholar 

  37. Smith AM, Ruan G, Rhyner MN, Nie S (2006) Ann Biomed Eng 34:3–14

    Google Scholar 

  38. Correa-Duarte MA, Kobayashi Y, Caruso RA, Liz-Marzán LM (2001) J Nanosci Nanotech 1:95–100

    CAS  Google Scholar 

  39. Reiss P, Bleuse J, Pron A (2002) Nano Lett 2:781–784

    CAS  Google Scholar 

  40. Zhang H, Zhou Z, Yang B (2003) J Phys Chem B 107:8–13

    CAS  Google Scholar 

  41. Rogach AL, Katsikas L, Kornowski A, Su D, Eychmüller A, Weller H (1996) Ber Bunsenges Phys Chem 100:1772–1778

    CAS  Google Scholar 

  42. Zhang H, Cui Z, Wang Y, Zhang K, Ji X, Lü C, Yang B, Gao MY (2003) Adv Mater 15:777–780

    CAS  Google Scholar 

  43. Mattoussi H, Mauro JM, Goldman ER, Anderson GP, Sundar VC, Mikulec FV, Bawendi MG (2000) J Am Chem Soc 122:12142–12150

    CAS  Google Scholar 

  44. Gaponik N, Talapin DV, Rogach AL, Hoppe K, Shevchenko EV, Kornowski A, Eychmüller A, Weller H (2002) J Phys Chem B 106:7177–7185

    CAS  Google Scholar 

  45. Zhang H, Wang L, Xiong H, Hu L, Yang B, Li W (2003) Adv Mater 15:1712–1715

    CAS  Google Scholar 

  46. Wang C, Ma Q, Su X (2008) J Nanosci Nanotech 8:4408–4414

    CAS  Google Scholar 

  47. Bao H, Gong Y, Li Z, Gao M (2004) Chem Mater 16:3853–3859

    CAS  Google Scholar 

  48. Wang C, Zhang H, Zhang J, Li M, Sun H, Yang B (2007) J Phys Chem C 111:2465–2469

    CAS  Google Scholar 

  49. Li L, Qian H, Ren J (2005) Chem Commun 528–530

  50. He Y, Sai LM, Lu HT, Hu M, Lai WY, Fan QL, Wang LH, Huang W (2007) Chem Mater 19:359–365

    CAS  Google Scholar 

  51. Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Science 281:2013–2016

    CAS  Google Scholar 

  52. Chan WCW, Nie SM (1998) Science 281:2016–2018

    CAS  Google Scholar 

  53. Goldman ER, Balighian ED, Mattoussi H, Kuno MK, Mauro JM, Tran PT, Anderson GP (2002) J Am Chem Soc 124:6378–6382

    CAS  Google Scholar 

  54. Pathak S, Choi S-K, Arnheim N, Thompson ME (2001) J Am Chem Soc 123:4103–4104

    CAS  Google Scholar 

  55. Goldman ER, Clapp AR, Anderson GP, Uyeda HT, Mauro JM, Medintz IL, Mattoussi H (2004) Anal Chem 76:684–688

    CAS  Google Scholar 

  56. Åkerman ME, Chan WCW, Laakkonen P, Bhatia SN, Ruoslahti E (2002) Proc Natl Acad Sci USA 99:12617–12621

    Google Scholar 

  57. Rosenthal SJ, Tomlinson I, Adkins EM, Schroeter S, Adams S, Swafford L, McBride J, Wang Y, DeFelice LJ, Blakely RD (2002) J Am Chem Soc 124:4586–4594

    CAS  Google Scholar 

  58. Kim S, Lim YT, Soltesz EG, DeGrand AM, Lee J, Nakayama A, Parker JA, Mihaljevic T, Laurence RG, Dor DM, Cohn LH, Bawendi MG, Frangioni JV (2004) Nat Biotechnol 22:93–97

    CAS  Google Scholar 

  59. Gao XH, Cui YY, Levenson RM, Chung LWK, Nie SM (2004) Nat Biotechnol 22:969–976

    CAS  Google Scholar 

  60. Willard DM, Orden AV (2003) Nat Mater 2:575–576

    CAS  Google Scholar 

  61. Willard DM, Carillo LL, Jung J, Van Orden A (2001) Nano Lett 1:469–474

    CAS  Google Scholar 

  62. Lodish J, Baltimore D, Berk A, Zipursky SL, Matsudaira P, Darnell J (1995) Molecular cell biology. Scientific American Books, New York

    Google Scholar 

  63. Jaiswal JK, Mattoussi H, Mauro JM, Simon SM (2003) Nat Biotechnol 21:47–51

    CAS  Google Scholar 

  64. Hsieh SC, Wang FF, Lin CS, Chen YJ, Hung SC, Wang YJ (2006) Biomaterials 27:1656–1664

    CAS  Google Scholar 

  65. Chakraborty SK, Fitzpatrick JAJ, Phillippi JA, Andreko S, Waggoner AS, Bruchez MP, Ballou B (2007) Nano Lett 7:2618–2626

    CAS  Google Scholar 

  66. Byrne SJ, Corr SA, Rakovich TY, Gun’ko YK, Rakovich YP, Donegan JF, Mitchellc S, Volkov Y (2006) J Mater Chem 16:2896–2902

    CAS  Google Scholar 

  67. Pathak S, Cao E, Davidson MC, Jin S, Silva GA (2006) J Neurosci 26:1893–1895

    CAS  Google Scholar 

  68. Fan Z, Jin W (2007) Talanta 72:1114–1122

    CAS  Google Scholar 

  69. Weng J, Song X, Li L, Qian H, Chen K, Xu X, Cao C, Ren J (2006) Talanta 70:397–402

    CAS  Google Scholar 

  70. Liu HY, Vu TQ (2007) Nano Lett 7:1044–1049

    CAS  Google Scholar 

  71. Pinaud F, King D, Moore H-P, Weiss S (2004) J Am Chem Soc 126:6115–6123

    CAS  Google Scholar 

  72. Derfus AM, Chan WCW, Bhatia SN (2004) Adv Mater 16:961–966

    CAS  Google Scholar 

  73. Xue X, Pan J, Xie H, Wang J, Zhang S (2009) Talanta 77:1808–1813

    CAS  Google Scholar 

  74. Zheng Y, Gao S, Ying JY (2007) Adv Mater 19:376–380

    CAS  Google Scholar 

  75. Ruan G, Agrawal A, Marcus AI, Nie S (2007) J Am Chem Soc 129:14759–14766

    CAS  Google Scholar 

  76. Barua S, Rege K (2009) Small 5:370–376

    CAS  Google Scholar 

  77. Orndorff RL, Rosenthal SJ (2009) Nano Lett 9:2589–2599

    CAS  Google Scholar 

  78. Mobley JA, Leav I, Zielie P, Wotkowitz C, Evans J, Lam Y-W, L’Esperance BS, Jiang Z, Ho S-M (2003) Cancer Epidemiol Biomark Prev 12:775–783

    CAS  Google Scholar 

  79. Yezhelyev MV, Al-Hajj A, Morris C, Marcus AI, Liu T, Lewis M, Cohen C, Zrazhevskiy P, Simons JW, Rogatko A, Nie S, Gao X, O’Regan RM (2007) Adv Mater 19:3146–3151

    CAS  Google Scholar 

  80. Ko MH, Kim S, Kang WJ, Lee JH, Kang H, Moon SH, Hwang DW, Ko HY, Lee DS (2009) Small 5:1207–1212

    CAS  Google Scholar 

  81. Yong K-T, Ding H, Roy I, Law W-C, Bergey EJ, Maitra A, Prasad PN (2009) ACS Nano 3:502–510

    CAS  Google Scholar 

  82. Li F, Zhang Z, Peng J, Cui Z, Pang D, Li K, Wei H, Zhou Y, Wen J, Zhang X (2009) Small 5:718–726

    CAS  Google Scholar 

  83. Hoshino A, Hanaki K, Suzuki K, Yamamoto K (2004) Biochem Biophys Res Commun 314:46–53

    CAS  Google Scholar 

  84. Estrada CR, Salanga M, Bielenberg DR, Harrell WB, Zurakowski D, Zhu X, Palmer MR, Freeman MR, Adam RM (2006) Cancer Res 66:3078–3086

    CAS  Google Scholar 

  85. Chu TC, Shieh F, Lavery LA, Levy M, Richards-Kortum R, Korgel BA, Ellington AD (2006) Biosens Bioelectron 21:1859–1866

    CAS  Google Scholar 

  86. Giepmans BNG, Deerinck TJ, Smarr BL, Jones YZ, Ellisman MH (2005) Nat Methods 2:743–749

    CAS  Google Scholar 

  87. Fountaine TJ, Wincovitch SM, Geho DH, Gargield SH, Pittaluga S (2006) Mod Pathol 19:1181–1191

    CAS  Google Scholar 

  88. Tholouli E, Hoyland JA, Di Vizio D, O’Connell F, MacDermott SA, Twomey D, Levenson R, Liu Yin JA, Golub TR, Loda M, Byers R (2006) Biochem Biophys Res Commun 348:628–636

    CAS  Google Scholar 

  89. Chan P, Yuen T, Ruf F, Gonzalez-Maeso J, Sealfon SC (2005) Nucleic Acids Res 33:e161–e169

    Google Scholar 

  90. Ferrara DE, Weiss D, Carnell PH, Vito RP, Vega D, Gao X, Nie S, Taylor WR (2006) Am J Physiol Regul Integr Comp Physiol 290:114–123

    Google Scholar 

  91. Orndorff RL, Warnement MR, Mason JN, Blakely RD, Rosenthal SJ (2008) Nano Lett 8:780–785

    CAS  Google Scholar 

  92. Chen C, Peng J, Xia H, Yang G, Wu Q, Chen L, Zeng L, Zhang Z, Pang D, Li Y (2009) Biomaterials. doi:10.1016/j.biomaterials.2009.02.010

  93. Chou LYT, Fischer HC, Perrault SD, Chan WCW (2009) Anal Chem. doi:10.1021/ac900344a

  94. Smith AM, Duan H, Mohs AM, Nie S (2008) Adv Drug Deliv Rev 60:1226–1240

    CAS  Google Scholar 

  95. Soltesz E, Kim S, Laurence R, DeGrand A, Parungo C, Dor D, Cohn L, Bawendi M, Frangioni J, Mihaljevic T (2005) Ann Thorac Surg 79:269–277

    Google Scholar 

  96. Ballou B, Lagerholm BC, Ernst LA, Bruchez MP, Waggoner AS (2004) Bioconjug Chem 15:79–86

    CAS  Google Scholar 

  97. Fischer HC, Liu LC, Pang KS, Chan WCW (2006) Adv Funct Mater 16:1299–1305

    CAS  Google Scholar 

  98. Choi HS, Liu W, Misra P, Tanaka E, Zimmer JP, Ipe BI, Bawendi MG, Frangioni JV (2007) Nat Biotechnol 25:1165–1170

    CAS  Google Scholar 

  99. Zimmer JP, Kim SW, Ohnishi S, Tanaka E, Frangioni JV, Bawendi MG (2006) J Am Chem Soc 128:2526–2527

    CAS  Google Scholar 

  100. Larson DR, Zipfel WR, Williams RM, Clark SW, Bruchez MP, Wise FW, Webb WW (2003) Science 300:1434–1436

    CAS  Google Scholar 

  101. Lim YT, Kim S, Nakayama A, Stott NE, Bawendi MG, Frangioni JV (2003) Mol Imaging 2:50–64

    CAS  Google Scholar 

  102. Smith JD, Fisher GW, Waggoner AS, Campbell PG (2007) Microvasc Res 73:75–83

    CAS  Google Scholar 

  103. Parungo C, Ohnishi S, Kim S, Kim S, Laurence R, Soltesz E, Chen F, Colson Y, Cohn L, Bawendi M, Frangioni J (2005) J Thorac Cardiovasc Surg 129:844–850

    Google Scholar 

  104. Rosen AB, Kelly DJ, Schuldt AJT, Lu J, Potapova IA, Doronin SV, Robichaud KJ, Robinson RB, Rosen MR, Brink PR, Gaudette GR, Cohen IS (2007) Stem Cells 25:2128–2138

    CAS  Google Scholar 

  105. Yu XF, Chen LD, Li KY, Li Y, Xiao S, Luo X, Liu J, Zhou L, Deng YL, Pang DW, Wang QQ (2007) J Biomed Opt 12:014008

    Google Scholar 

  106. Cai WB, Shin DW, Chen K, Gheysens O, Cao QZ, Wang SX, Gambhir SS, Chen XY (2006) Nano Lett 6:669–676

    CAS  Google Scholar 

  107. Stroh M, Zimmer JP, Duda DG, Levchenko TS, Cohen KS, Brown EB, Scadden DT, Torchilin VP, Bawendi MG, Fukumura D, Jain RK (2005) Nat Med 11:678–682

    CAS  Google Scholar 

  108. Tada H, Higuchi H, Wanatabe TM, Ohuchi N (2007) Cancer Res 67:1138–1144

    CAS  Google Scholar 

  109. Sandros MG, Behrendt M, Maysinger D, Tabrizian M (2007) Adv Funct Mater 17:3724–3730

    CAS  Google Scholar 

  110. Liu W, Choi HS, Zimmer JP, Tanaka E, Frangioni JV, Bawendi M (2007) J Am Chem Soc 129:14530–14531

    CAS  Google Scholar 

  111. Ducongé F, Pons T, Pestourie C, Hérin L, Thézé B, Gombert K, Mahler B, Hinnen F, Kühnast B, Dollé F, Dubertret B, Tavitian B (2008) Bioconjug Chem 19:1921–1926

    Google Scholar 

  112. Law W-C, Yong K-T, Roy I, Ding H, Hu R, Zhao W, Prasad PN (2009) Small 5:1302–1310

    CAS  Google Scholar 

  113. Yong KT, Roy I, Ding H, Bergey EJ, Prasad PN (2009) Small. doi:10.1002/smll.200900547

  114. Bhang SH, Won N, Lee T-J, Jin H, Nam J, Park J, Chung H, Park H, Sung Y-E, Hahn SK, Kim B-S, Kim S (2009) ACS Nano. doi:10.1021/nn900138d

  115. Dubertret B, Skourides P, Norris DJ, Noireaux V, Brivanlou AH, Libchaber A (2002) Science 298:1759–1762

    CAS  Google Scholar 

  116. Voura EB, Haiswal JK, Mattoussi H, Simon SM (2004) Nat Med 10:993–998

    CAS  Google Scholar 

  117. Yang L, Mao H, Wang YA, Cao Z, Peng X, Wang X, Duan H, Ni C, Yuan Q, Adams G, Smith MQ, Wood WC, Gao X, Nie S (2009) Small 5:235–243

    CAS  Google Scholar 

  118. Papagiannaros A, Levchenko T, Hartner W, Mongayt D, Torchilin V (2009) Nanomed Nanotechnol Biol Med 5:216–224

    CAS  Google Scholar 

  119. Hardman R (2006) Environ Health Perspect 14:165–172

    Article  Google Scholar 

  120. Derfus AM, Chan WCW, Bhatia SN (2004) Nano Lett 4:11–18

    CAS  Google Scholar 

  121. Hoshino A, Fujioka K, Oku T, Suga M, Sasaki YF, Ohta T, Yasuhara M, Suzuki K, Yamamoto K (2004) Nano Lett 4:2163–2169

    CAS  Google Scholar 

  122. Kirchner C, Liedl T, Kudera S, Pellegrino T, Munoz JA, Gaub HE (2005) Nano Lett 5:331–338

    CAS  Google Scholar 

  123. Lovric J, Bazzi HS, Cuie Y, Fortin GRA, Winnik FM, Maysinger D (2005) J Mol Med 83:377–385

    Google Scholar 

  124. Kirchner C, Javier AM, Susha AS, Rogach AL, Kreft O, Sukhorukov GB (2005) Tanlata 67:486–491

    CAS  Google Scholar 

  125. Male KB, Lachance B, Hrapovic S, Sunahara G, Luong JHT (2008) Anal Chem 80:5487–5493

    CAS  Google Scholar 

  126. Su Y, He Y, Lu H, Sai L, Li Q, Li W, Wang L, Shen P, Huang Q, Fan C (2009) Biomaterials 30:19–25

    CAS  Google Scholar 

  127. Chang E, Thekkek N, Yu WW, Colvin VL, Drezek R (2006) Small 2:1412

    CAS  Google Scholar 

  128. Lewinski N, Colvin V, Drezek R (2008) Small 4:26–49

    CAS  Google Scholar 

  129. Lovric J, Cho SJ, Winnik FM, Maysinger D (2005) Chem Biol 12:1227–1234

    CAS  Google Scholar 

  130. Hanaki KI, Momo A, Oku T, Komoto A, Maenosono S, Yamguchi Y (2003) Biochem Biophys Res Commun 302:496–501

    CAS  Google Scholar 

  131. Chen FQ, Gerion D (2004) Nano Lett 4:1827–1832

    CAS  Google Scholar 

  132. Pradhan N, Goorskey D, Thessing J, Peng X (2005) J Am Chem Soc 127:17586–17587

    CAS  Google Scholar 

  133. Pradhan N, Peng X (2007) J Am Chem Soc 129:3339–3347

    CAS  Google Scholar 

  134. Pradhan N, Battaglia DM, Liu Y, Peng X (2007) Nano Lett 7:312–317

    CAS  Google Scholar 

  135. Bhargava RN, Gallagher D, Hong X, Hurmikko A (1994) Phy Rev Lett 72:416–419

    CAS  Google Scholar 

  136. Yi G, Sun B, Yang F, Chen D (2001) J Mater Chem 11:2928–2929

    CAS  Google Scholar 

  137. Zhuang J, Zhang X, Wang G, Li D, Yang W, Li T (2003) J Mater Chem 13:1853–1857

    CAS  Google Scholar 

  138. Suyver JF, Wuister SF, Kelly JJ, Meijerink A (2000) Phys Chem Chem Phys 2:5445–5448

    CAS  Google Scholar 

  139. Norris DJ, Yao N, Charnock FT, Kennedy TA (2001) Nano Lett 1:3–7

    CAS  Google Scholar 

  140. Wang C, Gao X, Ma Q, Su X (2009) J Mater Chem 19:7016–7022

    CAS  Google Scholar 

  141. Li L, Daou TJ, Texier I, Chi TTK, Liem NQ, Reiss P (2009) Chem Mater. doi:10.1021/cm900103b

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 20475020, No. 20075009, No. 20875036), the Development Program of the Ministry of Science and Technology of Jilin Province, China (No. 20080544), and the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry (No. 3C109M791412).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingguang Su.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, C., Gao, X. & Su, X. In vitro and in vivo imaging with quantum dots. Anal Bioanal Chem 397, 1397–1415 (2010). https://doi.org/10.1007/s00216-010-3481-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-3481-6

Keywords

Navigation