Skip to main content
Log in

Cytometric methods for measuring bacteria in water: advantages, pitfalls and applications

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Rapid detection of microbial cells is a challenge in microbiology, particularly when complex indigenous communities or subpopulations varying in viability, activity and physiological state are investigated. Flow cytometry (FCM) has developed during the last 30 years into a multidisciplinary technique for analysing bacteria. When used correctly, FCM can provide a broad range of information at the single-cell level, including (but not limited to) total counts, size measurements, nucleic acid content, cell viability and activity, and detection of specific bacterial groups or species. The main advantage of FCM is that it is fast and easy to perform. It is a robust technique, which is adaptable to different types of samples and methods, and has much potential for automation. Hence, numerous FCM applications have emerged in industrial biotechnology, food and pharmaceutical quality control, routine monitoring of drinking water and wastewater systems, and microbial ecological research in soils and natural aquatic habitats. This review focuses on the information that can be gained from the analysis of bacteria in water, highlighting some of the main advantages, pitfalls and applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Frankland P (1896) Nature 54:52

    Article  Google Scholar 

  2. Sekar R, Fuchs BM, Amann R, Pernthaler J (2004) Appl Environ Microbiol 70:6210–6219

    Article  CAS  Google Scholar 

  3. Diaz M, Herrero M, Garcia LA, Quiros C (2010) Biochem Eng J 48:385–407

    Google Scholar 

  4. Koch R (1883) In: Ärztliches Vereinsblatt für Deutschland, 1883, Nr. 137. Vogel, Leipzig

  5. Staley JT, Konopka A (1985) Annu Rev Microbiol 39:321–346

    Article  CAS  Google Scholar 

  6. Lemarchand K, Parthuisot N, Catala P, Lebaron P (2001) Aquat Microb Ecol 25:301–309

    Article  Google Scholar 

  7. Lisle JT, Hamilton MA, Willse AR, McFeters GA (2004) Appl Environ Microbiol 70:5343–5348

    Article  CAS  Google Scholar 

  8. Felip M, Andreatta S, Sommaruga R, Straskrábová V, Catalan J (2007) Appl Environ Microbiol 73:4508–4514

    Article  CAS  Google Scholar 

  9. Shapiro HM (2003) Practical flow cytometry, 4th edn. Wiley-Liss, New York

    Google Scholar 

  10. Dubelaar GBJ, Gerritzen PL (2000) Sci Mar 64:255–265

    Google Scholar 

  11. Vesey G, Hutton P, Champion A, Ashbolt N, Williams KL, Warton A, Veal D (1994) Cytometry 16:1–6

    Article  CAS  Google Scholar 

  12. Brussaard CP, Marie D, Bratbak G (2000) J Virol Methods 85:175–182

    Article  CAS  Google Scholar 

  13. Waller DF, Ogata SA (2000) Appl Environ Microbiol 66:4115–4118

    Article  CAS  Google Scholar 

  14. Christensen H, Bakken LR, Olsen RA (1993) FEMS Microbiol Ecol 102:129–140

    Article  CAS  Google Scholar 

  15. Nebe-von-Caron G (2009) Cytometry Part A 75:86–89

    Article  Google Scholar 

  16. Lee JA, Spidlen J, Boyce K, Cai J, Crosbie N, Dalphin M, Furlong J, Gasparetto M, Goldberg M, Goralczyk EM, Hyun B, Jansen K, Kollmann T, Kong M, Leif R, McWeeney S, Moloshok TD, Moore W, Nolan G, Nolan J, Nikolich-Zugich J, Parrish D, Purcell B, Qian Y, Selvaraj B, Smith C, Tchuvatkina O, Wertheimer A, Wilkinson P, Wilson C, Wood J, Zigon R, Scheuermann RH, Brinkman RR (2008) Cytometry Part A 73:926–930

    Article  Google Scholar 

  17. Czechowska K, Johnson DR, van der Meer JR (2008) Curr Opin Microbiol 11:205–212

    Article  CAS  Google Scholar 

  18. Bergquist P, Hardiman E, Ferrari B, Winsley T (2009) Extremophiles 3:389–401

    Article  Google Scholar 

  19. Muirhead KA, Horan PK, Poste G (1985) Nat Biotechnol 3:337–356

    Article  CAS  Google Scholar 

  20. Fouchet P, Jayat C, Hechard Y, Ratinaud MH, Frelat G (1993) Biol Cell 78:95–109

    Article  CAS  Google Scholar 

  21. Vives-Rego J, Lebaron P, Nebe-von-Caron G (2000) FEMS Microbiol Rev 24:429–448

    Article  CAS  Google Scholar 

  22. Gasol JM, del Giorgio PA (2000) Sci Mar 64:197–224

    Article  Google Scholar 

  23. Lebaron P, Parthuisot N, Catala P (1998) Appl Environ Microbiol 64:1725–1730

    CAS  Google Scholar 

  24. Hammes FA, Egli T (2005) Environ Sci Technol 39:3289–3294

    Article  CAS  Google Scholar 

  25. Hammes F, Berney M, Wang Y, Vital M, Köster O, Egli T (2008) Water Res 42:269–277

    Article  CAS  Google Scholar 

  26. Robertson BR, Button DK (1989) Cytometry 10:70–76

    Article  CAS  Google Scholar 

  27. Wang Y, Hammes F, Boon N, Chami M, Egli T (2009) ISME J 3:889–902

    Article  CAS  Google Scholar 

  28. Koch AL, Robertson BR, Button DK (1996) J Microbiol Methods 27:49–61

    Article  Google Scholar 

  29. Robertson BR, Button DK, Koch AL (1998) Appl Environ Microbiol 64:3900–3909

    CAS  Google Scholar 

  30. Servais P, Casamayor EO, Courties C, Catala P, Parthuisot N, Lebaron P (2003) Aquat Microb Ecol 33:41–51

    Article  Google Scholar 

  31. Foladori P, Quaranta A, Ziglio G (2008) Water Res 42:3757–3766

    Article  CAS  Google Scholar 

  32. Müller S, Sträber H, Lösche A, Babel W (2002) J Biotechnol 97:163–176

    Article  Google Scholar 

  33. Müller S (2007) Cell Prolif 40:621–639

    Article  Google Scholar 

  34. Weinbauer MG, Beckmann C, Höfle MG (1998) Appl Environ Microbiol 64:5000–5003

    CAS  Google Scholar 

  35. Shapiro HM (1981) Cytometry 2:143–150

    Article  CAS  Google Scholar 

  36. Müller S, Ullrich S, Lösche A, Loffhagen N, Babel W (2000) J Microbiol Methods 40:667–677

    Article  Google Scholar 

  37. Gasol JM, Zweifel UL, Peters F, Fuhrman JA, Hagstrom A (1999) Appl Environ Microbiol 65:4475–4483

    CAS  Google Scholar 

  38. Lebaron P, Servais P, Agogue H, Courties C, Joux F (2001) Appl Environ Microbiol 67:1775–1782

    Article  CAS  Google Scholar 

  39. Li WKW, Jellett JF, Dickie PM (1995) Limnol Oceanogr 40:1485–1495

    Article  CAS  Google Scholar 

  40. Nishimura Y, Kim C, Nagata T (2005) Appl Environ Microbiol 71:5828–5836

    Article  CAS  Google Scholar 

  41. Wang Y, Hammes F, Egli T (2008) Water Res 42:4319–4326

    Article  CAS  Google Scholar 

  42. Longnecker K, Sherr BF, Sherr EB (2005) Appl Environ Microbiol 71:7737–7749

    Article  CAS  Google Scholar 

  43. Lebaron P, Servais P, Baudoux AC, Bourrain M, Courties C, Parthuisot N (2002) Aquat Microb Ecol 28:131–140

    Article  Google Scholar 

  44. Phe MH, Dossot M, Guilloteau H, Block JC (2005) Water Res 39:3618–3628

    Article  CAS  Google Scholar 

  45. Bouvier T, Del Giorgio PA, Gasol JM (2007) Environ Microbiol 9:2050–2066

    Article  CAS  Google Scholar 

  46. Falcioni T, Papa S, Campana R, Manti A, Battistelli M, Baffone W (2008) Cytometry B Clin Cytom 74:272–281

    Google Scholar 

  47. Berney M, Vital M, Hülshoff I, Weilenmann H-U, Egli T, Hammes F (2008) Water Res 42:4010–4018

    Article  CAS  Google Scholar 

  48. Lahtinen SJ, Ouwehand AC, Reinikainen JP, Korpela JM, Sandholm J, Salminen SJ (2006) Appl Environ Microbiol 72:5132–5134

    Article  CAS  Google Scholar 

  49. Novo DJ, Perlmutter NG, Hunt RH, Shapiro HM (2000) Antimicrob Agents Chemother 44:827–834

    Article  CAS  Google Scholar 

  50. Berney M, Weilenmann H-U, Egli T (2006) Microbiology 152:1719–1729

    Article  CAS  Google Scholar 

  51. Bosshard F, Berney M, Scheifele M, Weilenmann H-U, Egli T (2009) Microbiology 155:1310–1317

    Article  CAS  Google Scholar 

  52. Hewitt CJ, Nebe-von-Caron G, Axelsson B, McFarlane CM, Nienow AW (2000) Biotechnol Bioeng 70:381–390

    Article  CAS  Google Scholar 

  53. Berney M, Hammes F, Bosshard F, Weilenmann H-U, Egli T (2007) Appl Environ Microbiol 73:3283–3290

    Article  CAS  Google Scholar 

  54. Porter J, Deere D, Pickup R, Edwards C (1996) Cytometry 23:91–96

    Article  CAS  Google Scholar 

  55. Shi L, Gunther S, Hubschmann T, Wick LY, Harms H, Müller S (2007) Cytometry Part A 71:592–598

    Article  Google Scholar 

  56. Villarino A, Rager M-N, Grimont PA, Bouvet OMM (2003) Eur J Biochem 270:2689–2695

    Article  CAS  Google Scholar 

  57. Donnelly CW, Baigent GJ (1986) Appl Environ Microbiol 52:689–695

    CAS  Google Scholar 

  58. Phillips AP, Martin KL (1988) J Immunol Methods 106:109–117

    Article  CAS  Google Scholar 

  59. Hahn MA, Keng PC, Krauss TD (2008) Anal Chem 80:863–872

    Article  CAS  Google Scholar 

  60. Vital M, Hammes F, Egli T (2008) Environ Microbiol 10:2387–2396

    Article  CAS  Google Scholar 

  61. Füchslin HP, Kötzsch S, Keserue H-A, Egli T (2010) Cytometry Part A 77A:264–274

    Google Scholar 

  62. Vital M, Füchslin HP, Hammes F, Egli T (2007) Microbiology 153:1993–2001

    Article  CAS  Google Scholar 

  63. Clarke RG, Pinder AC (1998) J Appl Microbiol 84:577–584

    Article  CAS  Google Scholar 

  64. Gerdts G, Luedke G (2006) J Microbiol Methods 64:232–240

    Article  CAS  Google Scholar 

  65. Lenaerts J, Lappin-Scott HM, Porter J (2007) Appl Environ Microbiol 73:2020–2023

    Article  CAS  Google Scholar 

  66. Zahavy E, Heleg-Shabtai V, Zafrani Y, Marciano D, Yitzhaki S (2010) J Fluoresc (in press)

  67. Li Z, Bai GH, von Reyn CF, Marino P, Brennan MJ, Gine N, Morris SL (1996) J Clin Microbiol 34:1903–1907

    CAS  Google Scholar 

  68. Amigliani G, Omicciolo E, del Campo A, Bruce IJ, Grandi G, Magnani M (2006) J Appl Microbiol 100:375–383

    Article  CAS  Google Scholar 

  69. Aurell H, Catala P, Farge P, Wallet F, Le Brun M, Helbig JH, Jarraud S, Lebaron P (2004) Appl Environ Microbiol 70:1651–1657

    Article  CAS  Google Scholar 

  70. Weeks ME, Nebe-von-Caron G, James DC, Smales CJ, Robinson GK (2006) J Microbiol Methods 43:46–55

    Google Scholar 

  71. Ferrari BC, Oregaard G, Sorensen SJ (2004) Microb Ecol 48:239–245

    Article  CAS  Google Scholar 

  72. Bakker-Schut TC, De Grooth BG, Greve J (1993) Cytometry 13:649–659

    Article  Google Scholar 

  73. Boddy L, Wilkins MF, Morris CW (2001) Cytometry 44:195–201

    Article  CAS  Google Scholar 

  74. Günther S, Hübschmann T, Rudolf M, Eschenhagen M, Röske I, Harms H, Müller S (2008) J Microbiol Methods 75:127–134

    Article  CAS  Google Scholar 

  75. Rieseberg M, Kasper C, Reardon KF, Scheper T (2001) Appl Microbiol Biotechnol 56:350–360

    Article  CAS  Google Scholar 

  76. Bartram J, Cotruvo J, Exner M, Fricker C, Glasmacher A (2003) Heterotrophic plate counts and drinking-water safety. IWA Publishing, London

    Google Scholar 

  77. Rosenfeldt EJ, Baeza C, Knappe DRU (2009) J Am Water Works Assoc 101:60–70

    CAS  Google Scholar 

  78. Hoefel D, Grooby WL, Monis PT, Andrews S, Saint CP (2003) J Microbiol Methods 55:585–597

    Article  Google Scholar 

  79. Ziglio G, Andreottola G, Barbesti S, Boschetti G, Bruni L, Foladori P, Villa R (2002) Water Res 36:460–468

    Article  CAS  Google Scholar 

  80. Thyssen M, Mathieu D, Garcia N, Denis M (2008) J Plankton Res 30:1027–1040

    Article  CAS  Google Scholar 

  81. Maukonen J, Alakomi HL, Nohynek L, Hallamaa K, Leppamaki S, Matto J, Saarela M (2006) Food Res Int 39:22–32

    Article  CAS  Google Scholar 

  82. Looser V, Hammes F, Keller M, Berney M, Kovar K, Egli T (2005) Biotechnol Bioeng 92:69–78

    Article  CAS  Google Scholar 

  83. Ateya DA, Erickson JS, Howell PB, Hilliard LR, Golden JP, Ligler FS (2008) Anal Bioanal Chem 391:1485–1498

    Article  CAS  Google Scholar 

  84. Suller MTE, Lloyd D (1999) Cytometry Part 35:235–241

    Article  CAS  Google Scholar 

  85. Wallner G, Amann R, Beisker W (1993) Cytometry 14:136–143

    Article  CAS  Google Scholar 

  86. Ingram M, Cleary TJ, Priece RL, Castro A (1982) Cytometry Part A 3:134–137

    Article  CAS  Google Scholar 

  87. Tyndall RL, Hand RE, Mann RC, Evans C, Jernigan R (1985) Appl Environ Microbiol 49:852–857

    CAS  Google Scholar 

  88. Pinder AC, McClelland RG (1994) J Microsc 176:17–22

    CAS  Google Scholar 

  89. Nexmann Jacobsen C, Fremming C, Jakobsen M (1997) J Microbiol Methods 31:75–81

    Article  Google Scholar 

  90. Deng MW, Lam KM, Cliver DO (2000) J Microbiol Methods 40:11–17

    Article  CAS  Google Scholar 

  91. Ferrari BC, Veal D (2003) Cytometry Part A 51:79–86

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Egli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hammes, F., Egli, T. Cytometric methods for measuring bacteria in water: advantages, pitfalls and applications. Anal Bioanal Chem 397, 1083–1095 (2010). https://doi.org/10.1007/s00216-010-3646-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-3646-3

Keywords

Navigation