Skip to main content

Advertisement

Log in

Drug–protein binding: a critical review of analytical tools

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The extent of drug binding to plasma proteins, determined by measuring the free active fraction, has a significant effect on the pharmacokinetics and pharmacodynamics of a drug. It is therefore highly important to estimate drug-binding ability to these macromolecules in the early stages of drug discovery and in clinical practice. Traditionally, equilibrium dialysis is used, and is presented as the reference method, but it suffers from many drawbacks. In an attempt to circumvent these, a vast array of different methods has been developed. This review focuses on the most important approaches used to characterize drug–protein binding. A description of the principle of each method with its inherent strengths and weaknesses is outlined. The binding affinity ranges, information accessibility, material consumption, and throughput are compared for each method. Finally, a discussion is included to help users choose the most suitable approach from among the wealth of methods presented.

Range of binding constants (log Ka) assessable by the main separative and non-separative analytical tools used to characterize drug-protein interactions. ED: equilibrium dialysis, UF: ultrafiltration, PAMPA: parallel artificial membrane permeability assay, HPAC/ZE: high-performance affinity chromatography/zonal elution approach, HPAC/FA: high-performance affinity chromatography/frontal analysis approach, ACE: affinity capillary electrophoresis (mobility shift assay), CE/FA: capillary electrophoresis/frontal analysis, Spectro.: spectroscopic assays, ITC: isothermal titration calorimetry, comp.: competition studies, titration: titration studies, DSC: differential scanning calorimetry, SPR: surface plasmon resonance-based assays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ACE:

Affinity capillary electrophoresis (mobility shift assay)

AGP:

α1-Acid glycoprotein

BGE:

Background electrolyte

BSA:

Bovine serum albumin

CD:

Circular dichroism

CE:

Capillary electrophoresis

CE/FA:

Capillary electrophoresis/frontal analysis

CZE:

Capillary zone electrophoresis

D:

Drug

DP:

Drug–protein complex

DSC:

Differential scanning calorimetry

ED:

Equilibrium dialysis

FA:

Frontal analysis

FACCE:

Continuous capillary electrophoresis frontal analysis

HD:

Hummel–Dreyer method

HDL:

High-density lipoproteins

HPAC:

High-performance affinity chromatography

HSA:

Human serum albumin

IR:

Infrared

ISRP:

Internal-surface reversed phase

ITC:

Isothermal titration calorimetry

K a :

Association constant

K d :

Dissociation constant

k off :

Dissociation rate constant

k on :

Association rate constant

LC:

Liquid chromatography

LDL:

Low-density lipoproteins

LIF:

Laser-induced fluorescence

m :

Total number of different classes of binding sites

MS:

Mass spectrometry

n :

Number of binding sites with the same affinity per protein molecule

NMR:

Nuclear magnetic resonance

NSB:

Nonspecific binding

ORD:

Optical rotatory dispersion

P:

Protein

PAMPA:

Parallel artificial membrane assay

r :

Number of total drugs bound per protein

SEC:

Size-exclusion chromatography

SPR:

Surface plasmon resonance

UC:

Ultracentrifugation

UF:

Ultrafiltration

VACE:

Vacancy affinity capillary electrophoresis

VP:

Vacancy peak method

ZE:

Zonal elution

ΔCp:

Heat capacity change

ΔG :

Gibbs free energy

ΔH :

Enthalpy of the binding reaction

ΔS :

Entropy change

μ :

Electrophoretic mobility

References

  1. Otagiri M (2009) Study on binding of drug to serum protein. Yakusaigaku 129:413–425

    CAS  Google Scholar 

  2. Lohman JJHM (1986) Plasma protein binding of drugs. Pharmac Weekblad Sci Ed 8:302–304

    CAS  Google Scholar 

  3. Lindup WE, L’E Orme MC (1981) Plasma protein binding of drugs. Brit Med J 282:212–214

    Article  CAS  Google Scholar 

  4. Wan H, Holmen AG (2009) High throughput screening of physicochemical properties and in vitro ADME profiling in drug discovery. Comb Chem Highthroughput Screen 12:315–329

    Article  CAS  Google Scholar 

  5. Trainor GL (2007) The importance of plasma protein binding in drug discovery. Expert Opin Drug Discov 2:51–64

    Article  CAS  Google Scholar 

  6. Howard MI, Hill JJ, Galluppi GR, Mclean MA (2010) Plasma protein binding in drug discovery and development. Comb Chem High Throughput Screen 13:1–18

    Article  Google Scholar 

  7. Yotsuyanagi T, Ohta N, Futo T, Ito S (1991) DN Chen, K. Ikeda, Multiple and irreversible binding of cis-diamminedichloroplatinum(II) to human serum albumin and its effect on warfarin binding. Chem Pharm Bull (Tokyo) 39:3003–3006

    CAS  Google Scholar 

  8. Zini R (1991) Methods in drug protein binding analysis. In: Kuemmerle H, Shibuya T, Tillement JP (eds) Human Pharmacology. The Basis of Clinical Pharmacology. Elsevier Science Publishers, Amsterdam, pp 235–282

    Google Scholar 

  9. Kwon Y (2001) Handbook of Essential Pharmacokinetics. In: Kwon Y (ed) Pharmacodynamics and drug metabolism for industrial scientists. Springer Verlag, New York

    Google Scholar 

  10. Hage DS (2001) Chromatographic and electrophoretic studies of protein binding to chiral solutes. J Chromatogr A 906:459–481

    Article  CAS  Google Scholar 

  11. Sebille B, Zini R, Madjar CV, Thuaud N, Tillement JP (1990) Separation procedures used to reveal and follow drug–protein binding. J Chromatogr 531:51–77

    Article  CAS  Google Scholar 

  12. Klotz IM (1973) Physicochemical aspects of drug–protein interactions: a general perspective. Ann N Y Acad Sci 226:18–35

    Article  CAS  Google Scholar 

  13. Connors KA (1987) Binding Constants-The Measurement of Molecular Complex Stability. In: Connors KA, Wiley J (eds)

  14. Banker MJ, Clark TH, Williams JA (2003) Development and validation of a 96-well equilibrium dialysis apparatus for measuring plasma protein binding. J Pharm Sci 92:967–974

    Article  CAS  Google Scholar 

  15. Kariv I, Cao H, Oldenburg KR (2001) Development of a high throughput equilibrium dialysis method. J Pharm Sci 90:580–587

    Article  CAS  Google Scholar 

  16. Huang J (1983) Errors in estimating the unbound fraction of drugs due to the volume shifts in equilibrium dialysis. J Pharm Sci 72:1368–1369

    Article  CAS  Google Scholar 

  17. Lockwood GF, Wagner JG (1983) Plasma volume changes as a result of equilibrium dialysis. J Pharm Pharmacol 35:387–388

    CAS  Google Scholar 

  18. Oravcova J, Bohs B, Lindner W (1996) Drug–protein binding studies-New trends in analytical and experimental methodology. J Chromatogr B 677:1–28

    Article  Google Scholar 

  19. Mapleson WW (1987) Computation of the effect of Donnan equilibrium on pH in equilibrium dialysis. J Pharmacol Methods 17:231–242

    Article  CAS  Google Scholar 

  20. Bush MT, Alvin JD (1973) Characterization of drug–protein interactions by classic methods. Ann N Y Acad Sci 226:36–43

    Article  CAS  Google Scholar 

  21. Judd RL, Pesce AJ (1982) Free drug concentrations are constant in serial fractions of plasma ultrafiltrate. Clin Chem 28:1726–1727

    CAS  Google Scholar 

  22. Kurz H, Trunk H, Weitz B (1977) Evaluation of methods to determine protein-binding of drugs. Equilibrium dialysis, ultrafiltration, ultracentrifugation, gel filtration. Arzneimittelforschung 27:1373–1380

    CAS  Google Scholar 

  23. Reidenberg MM, Erill S (eds) (1986) Drug–protein binding. Praeger Publishers, New York

    Google Scholar 

  24. Kansy M, Senner F, Gubernator K (1998) Physicochemical high throughput screening: parallel artificial membrane permeation assay in the description of passive absorption processes. J Med Chem 41:1007–1010

    Article  CAS  Google Scholar 

  25. Di L, Kerns EH, Fan K, McConnell OJ, Carter GT (2003) High throughput artificial membrane permeability assay for blood-brain barrier. Eur J Med Chem 38:223–232

    Article  CAS  Google Scholar 

  26. Wohnsland F, Faller B (2001) High-throughput permeability pH profile and high-throughput alkane/water log P with artificial membranes. J Med Chem 44:923–930

    Article  CAS  Google Scholar 

  27. Ottaviani G, Martel S, Carrupt PA (2006) Parallel artificial membrane permeability assay: a new membrane for the fast prediction of passive human skin permeability. J Med Chem 49:3948–3954

    Article  CAS  Google Scholar 

  28. Lazaro E, Lowe PJ, Briand X, Faller B (2008) New approach to measure protein binding based on a parallel artificial membrane assay and human serum albumin. J Med Chem 51:2009–2017

    Article  CAS  Google Scholar 

  29. Hage DS, Tweed SA (1997) Recent advances in chromatographic and electrophoretic methods for the study of drug–protein interactions. J Chromatogr B 699:499–525

    Article  CAS  Google Scholar 

  30. Mori S, Barth HG (1999) In: Mori S, Barth HG (eds) Size Exclusion Chromatography. Springer, Berlin

    Google Scholar 

  31. Pinkerton TC, Koeplinger KA (1990) Determination of warfarin-human serum albumin protein binding parameters by an improved Hummel-Dreyer high-performance liquid chromatographic method using internal surface reversed-phase columns. Anal Chem 62:2114–2122

    Article  CAS  Google Scholar 

  32. Hage DS (2002) High-performance affinity chromatography: a powerful tool for studying serum protein binding. J Chromatogr B 768:3–30

    Article  CAS  Google Scholar 

  33. Heegaard NHH, Nilsson S, Guzman NA (1998) Affinity capillary electrophoresis: important application areas and some recent developments. J Chromatogr B 715:29–54

    Article  CAS  Google Scholar 

  34. Ascoli GA, Domenici E, Bertucci C (2006) Drug binding to human serum albumin: abridged review of results obtained with high-performance liquid chromatography and circular dichroism. Chirality 18:667–679

    Article  CAS  Google Scholar 

  35. Beaudry F, Coutu M, Brown NK (1999) Determination of drug–plasma-protein binding using human serum albumin chromatographic column and multiple linear regression model. Biomed Chromatogr 13:401–406

    Article  CAS  Google Scholar 

  36. Ashton DS, Beddell CR, Cockerill GS, Gohil K, Gowrie C, Robinson JE, Slater MJ, Valko K (1996) Binding measurements of indolocarbazole derivatives to immobilised human serum albumin by high-performance liquid chromatography. J Chromatogr B 677:194–198

    Article  Google Scholar 

  37. Cheng Y, Ho E, Subramanyam B, Tseng JL (2004) Measurements of drug–protein binding by using immobilized human serum albumin liquid chromatography-mass spectrometry. J Chromatogr B 809:67–73

    Article  CAS  Google Scholar 

  38. Domenici E, Bertucci C, Salvadori P, Felix G, Cahagne I, Motellier S, Wainer IW (1990) Synthesis and chromatographic properties of an HPLC chiral stationary phase based upon human serum-albumin. Chromatographia 29:170–176

    Article  CAS  Google Scholar 

  39. Bertucci C, Canepa A, Ascoli GA, Guimaraes LFL, Felix G (1999) Site I on human albumin: differences in the binding of (R)- and (S)-warfarin. Chirality 11:675–679

    Article  CAS  Google Scholar 

  40. Bertucci C, Bartolini M, Gotti R, Andrisano V (2003) Drug affinity to immobilized target bio-polymers by high-performance liquid chromatography and capillary electrophoresis. J Chromatogr B 797:111–129

    Article  CAS  Google Scholar 

  41. Jewell RC, Brouwer KLR, McNamara PJ (1989) [alpha]1-Acid glycoprotein high-performance liquid chromatography column (EnantioPAC) as a screening tool for protein binding. J Chromatogr B 487:257–264

    Article  CAS  Google Scholar 

  42. Frostell-Karlsson A, Remaeus A, Roos H, Andersson K, Borg P, Hämäläinen M, Karlsson R (2000) Biosensor analysis of the interaction between immobilized human serum albumin and drug compounds for prediction of human serum albumin binding levels. J Med Chem 43:1986–1992

    Article  CAS  Google Scholar 

  43. Xuan H, Hage DS (2005) Immobilization of alpha(1)-acid glycoprotein for chromatographic studies of drug–protein binding. Anal Biochem 346:300–310

    Article  CAS  Google Scholar 

  44. Chen S, Sobansky MR, Hage DS (2010) Analysis of drug interactions with high-density lipoprotein by high-performance affinity chromatography. Anal Biochem 397:107–114

    Article  CAS  Google Scholar 

  45. Leickt L, Mansson A, Ohlson S (2001) Prediction of affinity and kinetics in biomolecular interactions by affinity chromatography. Anal Biochem 291:102–108

    Article  CAS  Google Scholar 

  46. Nelson MA, Moser A, Hage DS (2010) Biointeraction analysis by high-performance affinity chromatography: kinetic studies of immobilized antibodies. J Chromatogr B 878:165–171

    Article  CAS  Google Scholar 

  47. Hage DS, Jackson A, Sobansky MR, Schiel JE, Yoo MJ, Joseph KS (2009) Characterization of drug–protein interactions in blood using high-performance affinity chromatography. J Sep Sci 32:835–853

    Article  CAS  Google Scholar 

  48. Mallik R, Yoo MJ, Chen S, Hage DS (2008) Studies of verapamil binding to human serum albumin by high-performance affinity chromatography. J Chromatogr B 876:69–75

    Article  CAS  Google Scholar 

  49. Kim HS, Wainer IW (2008) Rapid analysis of the interactions between drugs and human serum albumin (HSA) using high-performance affinity chromatography (HPAC). J Chromatogr B 870:22–26

    Article  CAS  Google Scholar 

  50. Annis DA, Nickbarg E, Yang X, Ziebell MR, Whitehurst CE (2007) Affinity selection-mass spectrometry screening techniques for small molecule drug discovery. Curr Opin Chem Biol 11:518–526

    Article  CAS  Google Scholar 

  51. Kovarik P, Hodgson RJ, Covey T, Brook MA, Brennan JD (2005) Capillary-scale frontal affinity chromatography/MALDI tandem mass spectrometry using protein-doped monolithic silica columns. Anal Chem 77:3340–3350

    Article  CAS  Google Scholar 

  52. Chan NWC, Lewis DF, Rosner PJ, Kelly MA, Schriemer DC (2003) Frontal affinity chromatography-mass spectrometry assay technology for multiple stages of drug discovery: applications of a chromatographic biosensor. Anal Biochem 319:1–12

    Article  CAS  Google Scholar 

  53. Toledo-Sherman L, Deretey E, Slon-Usakiewicz JJ, Ng W, Dai JR, Foster JE, Redden PR, Uger MD, Liao LC, Pasternak A, Reid N (2005) Frontal affinity chromatography with MS detection of EphB2 tyrosine kinase receptor. 2. Identification of small-molecule inhibitors via coupling with virtual screening. J Med Chem 48:3221–3230

    Article  CAS  Google Scholar 

  54. Heegaard NHH, Kennedy RT (1999) Identification, quantitation, and characterization of biomolecules by capillary electrophoretic analysis of binding interactions. Electrophoresis 20:3122–3133

    Article  CAS  Google Scholar 

  55. Seifar RM, Cool RH, Quax WJ, Bischoff R (2004) Characterization of the interaction between human complement protein C4 and a single-chain variable fragment antibody by capillary electrophoresis and surface plasmon resonance. Electrophoresis 25:1561–1568

    Article  CAS  Google Scholar 

  56. Gullo VP, Hughes DE (2005) Exploiting new approaches for natural product drug discovery in the biotechnology industry. Drug Discovery Today Technologies 2:281–286

    Article  Google Scholar 

  57. Mullady EL, Millett WP, Yoo HD, Weiskopf AS, Chen J, DiTullio D, Knight-Connoni V, Hughes DE, Pierceall WE (2004) A phthalide with in vitro growth inhibitory activity from an oidiodendron strain. J Nat Prod 67:2086–2089

    Article  CAS  Google Scholar 

  58. Pedersen JT, Ostergaard J, Houen G, Heegaard NHH (2008) Affinity capillary electrophoresis for identification and investigation of human Gc-globulin (vitamin D-binding protein) and its isoforms interacting with G-actin. Electrophoresis 29:1723–1733

    Article  CAS  Google Scholar 

  59. Dunayevskiy YM, Lyubarskaya YV, Chu YH, Vouros P, Karger BL (1998) Simultaneous measurement of nineteen binding constants of peptides to vancomycin using affinity capillary electrophoresis-mass spectrometry. J Med Chem 41:1201–1204

    Article  CAS  Google Scholar 

  60. Wan H, Ostlund A, Jonsson S, Lindberg W (2005) Single run measurements of drug–protein binding by high-performance frontal analysis capillary electrophoresis and mass spectrometry. Rapid Commun. Mass Spectrom 19(12):1603–1610

    CAS  Google Scholar 

  61. Machour N, Place J, Tron F, Charlionet R, Mouchard L, Morin C, Desbene A, Desbene PL (2005) Analysis of virtual two-dimensional gels based upon affinity capillary electrophoresis hyphenated to ion trap-mass spectrometry. Electrophoresis 26:1466–1475

    Article  CAS  Google Scholar 

  62. Jia Z (2005) Physicochemical profiling by capillary electrophoresis. Curr Pharm Anal 1:41–56

    Article  CAS  Google Scholar 

  63. Tanaka Y, Terabe S (2002) Estimation of binding constants by capillary electrophoresis. J Chromatogr B 768:81–92

    Article  CAS  Google Scholar 

  64. Busch MHA, Kraak JC, Poppe H (1997) Principles and limitations of methods available for the determination of binding constants with affinity capillary electrophoresis. J Chromatogr A 777:329–353

    Article  CAS  Google Scholar 

  65. Chu YH, Cheng CC (1998) Affinity capillary electrophoresis in biomolecular recognition. Cell Mol Life Sci 54:663–683

    Article  CAS  Google Scholar 

  66. Rundlett KL, Armstrong DW (2001) Methods for the determination of binding constants by capillary electrophoresis. Electrophoresis 22:1419–1427

    Article  CAS  Google Scholar 

  67. Busch MHA, Carels LB, Boelens HFM, Kraak JC, Poppe H (1997) Comparison of five methods for the study of drug–protein binding in affinity capillary electrophoresis. J Chromatogr A 777:311–328

    Article  CAS  Google Scholar 

  68. Jiang C, Armstrong DW (2010) Use of CE for the determination of binding constants. Electrophoresis 31:17–27

    Article  CAS  Google Scholar 

  69. Ostergaard J, Hansen SH, Jensen H, Thomsen AE (2005) Pre-equilibrium capillary zone electrophoresis or frontal analysis: Advantages of plateau peak conditions in affinity capillary electrophoresis. Electrophoresis 26:4050–4054

    Article  CAS  Google Scholar 

  70. Ostergaard J, Heegaard NHH (2006) Bioanalytical interaction studies executed by preincubation affinity capillary electrophoresis. Electrophoresis 27:2590–2608

    Article  CAS  Google Scholar 

  71. Winzor DJ (2008) Determination of binding constants by analogous procedures in size exclusion chromatography and capillary electrophoresis. Anal Biochem 383:1–17

    Article  CAS  Google Scholar 

  72. Ostergaard J, Heegaard NHH (2003) Capillary electrophoresis frontal analysis: Principles and applications for the study of drug–plasma-protein binding. Electrophoresis 24:2903–2913

    Article  CAS  Google Scholar 

  73. Liu XJ, Dahdouh F, Salgado M, Gomez FA (2009) Recent advances in affinity capillary electrophoresis (2007). J Pharm Sci 98:394–410

    Article  CAS  Google Scholar 

  74. Bose S, Yang J, Hage DS (1997) Guidelines in selecting ligand concentrations for the determination of binding constants by affinity capillary electrophoresis. J Chromatogr B 697:77–88

    Article  CAS  Google Scholar 

  75. Rundlett KL, Armstrong DW (1997) Methods for the estimation of binding constants by capillary electrophoresis. Electrophoresis 18:2194–2202

    Article  CAS  Google Scholar 

  76. Colton IJ, Carbeck JD, Rao J, Whitesides GM (1998) Affinity capillary electrophoresis: a physical-organic tool for studying interactions in biomolecular recognition. Electrophoresis 19:367–382

    Article  CAS  Google Scholar 

  77. Liu YC, Yang ZY, Du J, Yao XJ, Lei RX, Zheng XD, Liu JN, Hu HS, Li H (2008) Study on the interactions of kaempferol and quercetin with intravenous immunoglobulin by fluorescence quenching. Fourier transformation infrared spectroscopy and circular dichroism spectroscopy. Chem Pharm Bull 56:443–451

    Article  CAS  Google Scholar 

  78. Chignell CF (1973) Recent advances in methodology-spectroscopic techniques. Ann N Y Acad Sci 226:44–59

    Article  CAS  Google Scholar 

  79. Chignell CF (1969) Optical studies of drug–protein complexes.3. Interaction of Flufenamic Acid and other N-Arylanthranilates with serum albumin. Mol Pharmacol 5:455

    CAS  Google Scholar 

  80. Chignell CF (1999) Optical studies of drug–protein complexes. II. Interaction of phenylbutazone and its analogues with human serum albumin. Mol Pharmacol 5:244–252

    Google Scholar 

  81. Chignell CF, Starkwea DK (1971) Optical studies of drug–protein complexes.5. Interaction of phenylbutazone, flufenamic acid, and dicoumarol with acetylsalicylic acid-treated human serum albumin. Mol Pharmacol 7:229

    CAS  Google Scholar 

  82. Monti S, Manet I, Manoli F, Marconi G (2008) Structure and properties of licochalcone A-human serum albumin complexes in solution: a spectroscopic, photophysical and computational approach to understand drug–protein interaction. Phys Chem Chem Phys 10:6597–6606

    Article  CAS  Google Scholar 

  83. Otagiri M, Masuda K, Imai T, Imamura Y, Yamasaki M (1989) Binding of pirprofen to human serum albumin studied by dialysis and spectroscopy techniques. Biochem Pharmacol 38:1–7

    Article  CAS  Google Scholar 

  84. Mathur S, Badertscher M, Scott M, Zenobi R (2007) Critical evaluation of mass spectrometric measurement of dissociation constants: accuracy and cross-validation against surface plasmon resonance and circular dichroism for the calmodulin-melittin system. Phys Chem Chem Phys 9:6187–6198

    Article  Google Scholar 

  85. Velazquez-Campoy A, Ohtaka H, Nezami A, Muzammil S, Freire E (2004) Isothermal titration calorimetry. Curr Protoc Cell Biol 17:1–24

    Google Scholar 

  86. Bjelic S, Jelesarov I (2008) A survey of the year 2007 literature on applications of isothermal titration calorimetry. J Mol Recognit 21:289–311

    Article  CAS  Google Scholar 

  87. Hensley P (1996) Defining the structure and stability of macromolecular assemblies in solution: The re-emergence of analytical ultracentrifugation as a practical tool. Structure 4:367–373

    Article  CAS  Google Scholar 

  88. Haines PJ (2002) Principles of Thermal Analysis Calorimetry. In: Haines PJ (ed) Royal Society of Chemistry. Royal Society of Chemistry, Cambridge

    Google Scholar 

  89. Velazquez-Campoy A, Leavitt SA, Freire E (2004) Characterization of protein-protein interactions by isothermal titration calorimetry. In 'Protein-Protein Interactions', pp. 35-54

  90. Jecklin MC, Schauer S, Dumelin CE, Zenobi R (2009) Label-free determination of protein-ligand binding constants using mass spectrometry and validation using surface plasmon resonance and isothermal titration calorimetry. J Mol Recognit 22:319–329

    Article  CAS  Google Scholar 

  91. Plotnikov V, Rochalski A, Brandts M, Brandts JF, Williston S, Frasca V, Lin LN (2002) An autosampling differential scanning calorimeter instrument for studying molecular interactions. Assay Drug Dev Technol 1:83–90

    Article  CAS  Google Scholar 

  92. Brandts JF, Lin LN (1990) Study of strong to ultratight protein interactions using differential scanning calorimetry. Biochemistry 29:6927–6940

    Article  CAS  Google Scholar 

  93. Perozzo R, Folkers G, Scapozza L (2004) Thermodynamics of protein–ligand interactions: history, presence, and future aspects. J Recept Signal Transduction 24:1–52

    Article  CAS  Google Scholar 

  94. Barbosa S, Taboada P, Mosquera V (2005) Analysis of the interactions between human serum albumin/amphiphilic penicillin in different aqueous media: an isothermal titration calorimetry and dynamic light scattering study. Chem Phys 310:51–58

    Article  CAS  Google Scholar 

  95. Garidel P, Hoffmann C, Blume A (2009) A thermodynamic analysis of the binding interaction between polysorbate 20 and 80 with human serum albumins and immunoglobulins: a contribution to understand colloidal protein stabilisation. Biophys Chem 143:70–78

    Article  CAS  Google Scholar 

  96. Gomez J, Hilser VJ, Xie D, Freire E (1995) The heat-capacity of proteins. Proteins: Struct Funct Genet 22:404–412

    Article  CAS  Google Scholar 

  97. Freire E (2006) Overcoming HIV-1 resistance to protease inhibitors. Drug Discovery Today: Disease Mechanisms 3:281–286

    Article  Google Scholar 

  98. Schwarz FP (1988) Interaction of cytidine 3′-monophosphate and uridine 3′-monophosphate with ribonuclease-A at the denaturation temperature. Biochemistry 27:8429–8436

    Article  CAS  Google Scholar 

  99. Pace CN, Mcgrath T (1980) Substrate stabilization of lysozyme to thermal and guanidine-hydrochloride denaturation. J Biol Chem 255:3862–3865

    CAS  Google Scholar 

  100. Garbett NC, Mekmaysy CS, Helm CW, Jenson AB, Chaires JB (2009) Differential scanning calorimetry of blood plasma for clinical diagnosis and monitoring. Exp Mol Pathol 86:186–191

    Article  CAS  Google Scholar 

  101. Torreri P, Ceccarini M, Macioce P, Petrucci TC (2005) Biomolecular interactions by surface plasmon resonance technology. Ann Ist Super Sanità 41:437–441

    Google Scholar 

  102. Schasfoort RBM, Tudos AJ (2008) In: Schasfoort RBM, Tudos AJ (eds) Handbook of Surface Plasmon Resonance. The Royal Society of Chemistry, Cambridge

    Chapter  Google Scholar 

  103. Rich RL, Myszka DG (2004) Why you should be using more SPR biosensor technology. Drug Discovery Today: Technologies 1:301–308

    Article  CAS  Google Scholar 

  104. Huber W, Mueller F (2006) Biomolecular interaction analysis in drug discovery using surface plasmon resonance technology. Curr Pharm Des 12:3999–4021

    Article  CAS  Google Scholar 

  105. Myszka DG, Rich RL (2000) Implementing surface plasmon resonance biosensors in drug discovery. Pharm Sci Technolog Today 3:310–317

    Article  CAS  Google Scholar 

  106. Rich RL, Myszka DG (2000) Advances in surface plasmon resonance biosensor analysis. Curr Opin Biotechnol 11:54–61

    Article  CAS  Google Scholar 

  107. Day YSN, Baird CL, Rich RL, Myszka DG (2002) Direct comparison of binding equilibrium, thermodynamic, and rate constants determined by surface- and solution-based biophysical methods. Protein Sci 11:1017–1025

    Article  CAS  Google Scholar 

  108. Myszka DG, Abdiche YN, Arisaka F, Byron O, Eisenstein E, Hensley P, Thomson JA, Lombardo CR, Schwarz F, Stafford W, Doyle ML (2003) The ABRF-MIRG’02 Study: assembly state, thermodynamic, and kinetic analysis of an enzyme/inhibitor interaction. J Biomol Techn 14:247–269

    CAS  Google Scholar 

  109. Pattnaik P (2005) Surface plasmon resonance - Applications in understanding receptor-ligand interaction. App Biochem Biotech 126:79–92

    Article  CAS  Google Scholar 

  110. Cimitan S, Lindgren MT, Bertucci C, Danielson UH (2005) Early absorption and distribution analysis of antitumor and anti-AIDS drugs: Lipid membrane and plasma protein interactions. J Med Chem 48:3536–3546

    Article  CAS  Google Scholar 

  111. Liu X, Liang A, Shen Z, Liu X, Zhang Y, Dai Z, Xiong B, Lin B (2006) Studying drug-plasma protein interactions by two-injector microchip electrophoresis frontal analysis. Electrophoresis 27:5128–5131

    Article  CAS  Google Scholar 

  112. Liu X, Liu X, Liang A, Shen Z, Zhang Y, Dai Z, Xiong B, Lin B (2006) Studying protein-drug interaction by microfluidic chip affinity capillary electrophoresis with indirect laser-induced fluorescence detection. Electrophoresis 27:3125–3128

    Article  CAS  Google Scholar 

  113. Nie Z, Fung YS (2008) Microchip capillary electrophoresis for frontal analysis of free bilirubin and study of its interaction with human serum albumin. Electrophoresis 29:1924–1931

    Article  CAS  Google Scholar 

  114. Heegaard NHH, Schou C, Ostergaard J (2007) Analysis of proteins in solution using affinity capillary electrophoresis. In: Zachariou M (ed) 'Methods in molecular biology: affinity chromatography: methods and protocols'. Humana Press, Totowa, pp 303–338

    Google Scholar 

  115. Singh SK, Kishore N (2008) Calorimetric and spectroscopic studies on the interaction of methimazole with bovine serum albumin. J Pharm Sci 97:2362–2372

    Article  CAS  Google Scholar 

  116. Cheema MA, Taboada P, Barbosa S, Castro E, Siddiq M, Mosquera V (2007) Energetics and conformational changes upon complexation of a phenothiazine drug with human serum albumin. Biomacromolecules 8:2576–2585

    Article  CAS  Google Scholar 

  117. Berezhkovskiy LM (2008) Some features of the kinetics and equilibrium of drug binding to plasma proteins. Expert Opin Drug Metab Toxicol 4:1479–1498

    Article  CAS  Google Scholar 

  118. Frazier RA, Papadopoulou A, Green RJ (2006) Isothermal titration calorimetry study of epicatechin binding to serum albumin. J Pharm Biomed Anal 41:1602–1605

    Article  CAS  Google Scholar 

  119. Saboury AA (2003) Application of a new method for data analysis of isothermal titration calorimetry in the interaction between human serum albumin and Ni2+. J Chem Thermodyn 35:1975–1981

    Article  CAS  Google Scholar 

  120. Wu LL, Gao HW, Gao NY, Chen FF, Chen L (2009) Interaction of perfluorooctanoic acid with human serum albumin. Bmc Structural Biology 9:31–37

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sophie Martel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vuignier, K., Schappler, J., Veuthey, JL. et al. Drug–protein binding: a critical review of analytical tools. Anal Bioanal Chem 398, 53–66 (2010). https://doi.org/10.1007/s00216-010-3737-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-3737-1

Keywords

Navigation