Skip to main content
Log in

PCR-free MDR1 polymorphism identification by gold nanoparticle probes

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Single nucleotide polymorphisms (SNPs) represent the most abundant source of genetic variation in the human genome, and they can be linked to genetic susceptibilities or varied pharmaceutical responses. Established SNP detection techniques are mainly PCR-based, which means that they involve complex, labor-intensive procedures, are easy contaminated, and can give false-positive results. Therefore, we have developed a simple and rapid MS-based disulfide barcode methodology that relies on magnifying the signal from a dual-modified gold nanoparticle. This approach permits direct SNP genotyping of total human genomic DNA without the need for primer-mediated enzymatic amplification. Disulfides that are attached to the gold nanoparticle serve as a “barcode” that allows different sequences to be discerned using MS detection. Specificity is based on two sequential oligonucleotide hybridizations, which include two steps: the first is the capture of the target by gene-specific probes immobilized onto magnetic beads; the second is the recognition of gold nanoparticles functionalized with allele-specific oligonucleotides. The sensitivity of this new method reaches down to the 0.1 fM range, thus approaching that of PCR. The feasability of this SNP identification methodology based on an MS-based disulfide barcode assay was demonstrated by applying it to genomic DNA samples representing all possible genotypes of the SNPs G2677T and C3435T in the human MDR1 gene. Due to its great advantage—the ability to perform SNP typing without the use of PCR—the assay was found to be simple, rapid and robust, and so may be highly suited to routine clinical detection as well as basic medical research.

SNP typing procedures of the MS-based disulfide-barcode assay

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Riva A, Kohane IS (2004) BMC Bioinform 5:33

    Article  Google Scholar 

  2. Salisbury BA, Pungliya M, Choi JY, Jiang RH, Sun XJ, Stephens JC (2003) Mut Res Fundam Mol Mechan Mutagen 526:53

    Google Scholar 

  3. Bao YP, Huber M, Wei TF, Marla SS, Storhoff JJ, Muller UR (2005) Nucleic Acids Res 33:e15

    Article  Google Scholar 

  4. Glinsky GV (2008) Cell Cycle 7:2570

    CAS  Google Scholar 

  5. Myakishev MV, Khripin Y, Hu S, Hamer DH (2001) Genome Res 11:163

    Article  CAS  Google Scholar 

  6. Song P, Meibohm B, Gaber AO, Honaker MR, Kotb M, Yates CR (2002) Clin Pharmacol Ther 71:103

    Article  Google Scholar 

  7. Georgiana DC, Alexandra SG, Nicoleta C, Stanciu F, Dobre M, Dorina B, Rodica T, Cristea P, Veronica S (2009) Rom Biotechnol Lett 14:4845

    Google Scholar 

  8. Wang WP, Ni KY, Zhou GH (2006) Chem J Chin Uni Chinese 27:1856

    Google Scholar 

  9. Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ (1996) Nature 382:607

    Article  CAS  Google Scholar 

  10. Niemeyer CM (2001) Angew Chem Int Ed 40:4128

    Article  CAS  Google Scholar 

  11. Toubanaki DK, Christopoulos TK, Ioannou PC, Gravanis A (2008) Appl Pharmacogenet Anal 275:367

    Google Scholar 

  12. Stoeva SI, Lee JS, Smith JE, Rosen ST, Mirkin CA (2006) J Am Chem Soc 128:8378

    Article  CAS  Google Scholar 

  13. Stoeva SI, Lee JS, Thaxton CS, Mirkin CA (2006) Angew Chem Int Ed 45:3303

    Article  CAS  Google Scholar 

  14. Palegrosdemange C, Simon ES, Prime KL, Whitesides GM (1991) J Am Chem Soc 113:12

    Article  CAS  Google Scholar 

  15. Houseman BT, Gawalt ES, Mrksich M (2003) Langmuir 19:1522

    Article  CAS  Google Scholar 

  16. Wu LL, Qiu LW, Shi CS, Zhu J (2007) Biomacromol 8:2795

    Article  CAS  Google Scholar 

  17. Qiu F, Jiang DW, Ding YB, Zhu J, Huang LL (2008) Angew Chem Int Ed 47:5009

    Article  CAS  Google Scholar 

  18. Grabar KC, Freeman RG, Hommer MB, Natan MJ (1995) Anal Chem 67:735

    Article  CAS  Google Scholar 

  19. Frens G (1973) Nature Phy Sci 241:20

    Google Scholar 

  20. Nam JM, Stoeva SI, Mirkin CA (2004) J Am Chem Soc 126:5932

    Article  CAS  Google Scholar 

  21. Hill HD, Mirkin CA (2006) Nat Protoc 1:324

    Article  CAS  Google Scholar 

  22. Jin RC, Wu GS, Li Z, Mirkin CA, Schatz GC (2003) J Am Chem Soc 125:1643

    Article  CAS  Google Scholar 

  23. Storhofff JJ, Elghanian R, Mirkin CA, Letsinger RL (2002) Langmuir 18:6666

    Article  Google Scholar 

  24. Hurst SJ, Lytton-Jean AKR, Mirkin CA (2006) Anal Chem 78:8313

    Article  CAS  Google Scholar 

  25. Wang NL, Zhang P, Guo XJ, Xie J, Huo R, Wang FQ, Chen L, Shen J, Zhou ZM, Shi QH, Zhao BG, Sha JH (2009) Proteomics 9:3425

    Article  CAS  Google Scholar 

  26. Zhang Y, Shuang SM, Dong C, Lo CK, Paau MC, Choi MMF (2009) Anal Chem 81:1676

    Article  CAS  Google Scholar 

  27. Tang J, Liu YC, Qi DW, Yao GP, Deng CH, Zhang XM (2009) Proteomics 9:5046

    Article  CAS  Google Scholar 

  28. Sommer SS, Groszbach AR, Bottema CDK (1992) Biotech 12:82

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Scientific Research Foundation for Returned Overseas Chinese Scholars from the Education Ministry of China (No. 0214168001), the National Natural Science Foundation of China (Grant 20975113), and the National Key Science and Technology Special Project (2008zxj09014-012). We thank Dr. Erol Gulcicek of Yale University for his critical review of our manuscript. We also wish to acknowledge Fuqiang Wang for his technical assistance in the MALDI-TOF mass spectrometry detection experiments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guohua Zhou or Lequn Lee Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, B., Zhou, G. & Huang, L.L. PCR-free MDR1 polymorphism identification by gold nanoparticle probes. Anal Bioanal Chem 397, 1937–1945 (2010). https://doi.org/10.1007/s00216-010-3750-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-3750-4

Keywords

Navigation