Skip to main content

Advertisement

Log in

Part I: characterization of the extracellular proteome of the extreme thermophile Caldicellulosiruptor saccharolyticus by GeLC-MS2

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

An Erratum to this article was published on 15 August 2010

Abstract

The proteome of extremely thermophilic microorganisms affords a glimpse into the dynamics of microbial ecology of high temperature environments. The secretome, or extracellular proteome of these microorganisms, no doubt harbors technologically important enzymes and other thermostable biomolecules that, to date, have been characterized only to a limited extent. In the first of a two-part study on selected thermophiles, defining the secretome requires a sample preparation method that has no negative impact on all downstream experiments. Following efficient secretome purification, GeLC-MS2 analysis and prediction servers suggested probable protein secretion to complement experimental data. In an effort to define the extracellular proteome of the extreme thermophilic bacterium Caldicellulosiruptor saccharolyticus, several techniques were considered regarding sample processing to achieve the most in-depth analysis of secreted proteins. Order of operation experiments, all including the C18 bead technique, demonstrated that two levels of sample purification were necessary to effectively desalt the sample and provide sufficient protein identifications. Five sample preparation combinations yielded 71 proteins and the majority described, as enzymatic and putative uncharacterized proteins, anticipate consolidated bioprocessing applications. Nineteen proteins were predicted by Phobius, SignalP, SecretomeP, or TatP for extracellular secretion, and 11 contained transmembrane domain stretches suggested by Phobius and transmembrane hidden Markov model. The sample preparation technique demonstrating the most effective outcome for C. saccharolyticus secreted proteins in this study, involved acetone precipitation followed by the C18 bead method in which 2.4% (63 proteins) of the predicted proteome was identified, including proteins suggested to have secretion and transmembrane moieties.

Experimental workflow for the evaluation of sample cleanup techniques for the secretome of the thermophilic bacterium Caldicellulosiruptor saccharolyticus with possibility to traverse other similarly grown bacterium. Several sample purification methods were assessed individually as well as in combination with a C18 bead method in an effort to afford the greatest number of confidently identified proteins. Analysis of the identified proteins by prediction servers complemented the experimental secretome investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Antranikian G, Egorova K (2007) Extremophiles, a unique resource of biocatalysts for industrial biotechnology. In: Gerday C, Glansdorff N (eds) Physiology and biochemistry of extremophiles. ASM Press, Washington, pp 361–406

    Google Scholar 

  2. VanFossen AL, Lewis DL, Nichols JD, Kelly RM (2008) Polysaccharide degradation and synthesis by extremely nermophilic anaerobes. Ann NY Acad Sci 1125:322–337

    Article  CAS  Google Scholar 

  3. Vafiadi C, Topakas E, Biely P, Christakopoulos P (2009) Purification, characterization and mass spectrometric sequencing of a thermophilic glucuronoyl esterase from Sporotrichum thermophile. FEMS Microbiol Lett 296:178–184

    Article  CAS  Google Scholar 

  4. Barabote RD, Xie G, Leu DH, Normand P, Necsulea A, Daubin V, Medigue C, Adney WS, Xu XC, Lapidus A, Parales RE, Detter C, Pujic P, Bruce D, Lavire C, Challacombe JF, Brettin TS, Berry AM (2009) Complete genome of the cellulolytic thermophile Acidothermus cellulolyticus 11B provides insights into its ecophysiological and evolutionary adaptations. Genome Res 19:1033–1043

    Article  CAS  Google Scholar 

  5. Asada Y, Endo S, Inoue Y, Mamiya H, Hara A, Kunishima N, Matsunaga T (2009) Biochemical and structural characterization of a short-chain dehydrogenase/reductase of Thermus thermophilus HB8 A hyperthermostable aldose-1-dehydrogenase with broad substrate specificity. Chem Biol Interact 178:117–126

    Article  CAS  Google Scholar 

  6. Muhammad SA, Ahmad S, Hameed A (2009) Antibiotic production by Thermophilic bacillus specie Sat-4. Pak J Pharm Sci 22:339–345

    CAS  Google Scholar 

  7. Esikova TZ, Temirov YV, Sokolov SL, Alakhov YB (2002) Secondary antimicrobial metabolites produced by thermophilic Bacillus spp. strains VK2 and VK21. Appl Biochem Microbiol 38:226–231

    Article  CAS  Google Scholar 

  8. Sato S, Hutchison CA, Harris JI (1977) Thermostable sequence-specific endonuclease from Thermus aquaticus. PNAS 74:542–546

    Article  CAS  Google Scholar 

  9. Tjalsma H, Bolhuis A, Jongbloed JDH, Bron S, van Dijl JM (2000) Signal peptide-dependent protein transport in Bacillus subtilis: a genome-based survey of the secretome. Microbiol Mol Biol Rev 64:515–547

    Article  CAS  Google Scholar 

  10. Zhou M, Boekhorst J, Francke C, Siezen RJ (2008) LocateP: genome-scale subcellular-location predictor for bacterial proteins. BMC Bioinform 9:173

    Article  CAS  Google Scholar 

  11. Hathout Y (2007) Approaches to the study of the cell secretome. Expert Rev Proteomics 4:239–248

    Article  CAS  Google Scholar 

  12. Rainey FA, Donnison AM, Janssen PH, Saul D, Rodrigo A, Bergquist PL, Daniel RM, Stackebrandt E, Morgan HW (1994) Description of Caldicellulosiruptor saccharolyticus gen. nov., sp. nov: an obligately anaerobic, extremely thermophilic, cellulolytic bacterium. FEMS Microbiol Lett 120:263–266

    Article  CAS  Google Scholar 

  13. Blumer-Schuette SE, Kataeva I, Westpheling J, Adams MWW, Kelly RM (2008) Extremely thermophilic microorganisms for biomass conversion: status and prospects. Curr Opin Biotechnol 19:210–217

    Article  CAS  Google Scholar 

  14. Rezaul K, Wu LF, Mayya V, Hwang SI, Han D (2005) A systematic characterization of mitochondrial proteome from human T leukemia cells. Mol Cell Proteomics 4:169–181

    CAS  Google Scholar 

  15. Bendtsen JD, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340:783–795

    Article  CAS  Google Scholar 

  16. Nielsen H, Engelbrecht J, Brunak S, von Heijne G (1997) Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10:1–6

    Article  CAS  Google Scholar 

  17. van der Does C, Nouwen N, Driessen AJM (2003) The Sec translocase. In: Oudega B (ed) Protein secretion pathways in bacteria. Kluwer Academic Publishers, Boston, p 296

    Google Scholar 

  18. Bendtsen JD, Nielsen H, Widdick D, Palmer T, Brunak S (2005) Prediction of twin-arginine signal peptides. BMC Bioinform 6:167

    Article  CAS  Google Scholar 

  19. Muesch A, Hartmann E, Rohde K, Rubartelli A, Sitia R, Rapoport TA (1990) A novel pathway for secretory proteins. Trends Biochem Sci 15:86–88

    Article  CAS  Google Scholar 

  20. Rubartelli A, Cozzolino F, Talio M, Sitia R (1990) A novel secretory pathway for interleukin-1-beta, a protein lacking a signal sequence. EMBO J 9:1503–1510

    CAS  Google Scholar 

  21. Harth G, Clemens DL, Horwitz MA (1994) Glutamine synthetase of Mycobacterium tuberculosis: extracellular release and characterization of its enzymatic activity. PNAS 91:9342–9346

    Article  CAS  Google Scholar 

  22. Harth G, Horwitz MA (1997) Expression and efficient export of enzymatically active Mycobacterium tuberculosis glutamine synthetase in Mycobacterium smegmatis and evidence that the information for export is contained within the protein. J Biol Chem 272:22728–22735

    Article  CAS  Google Scholar 

  23. Bendtsen JD, Kiemer L, Fausboll A, Brunak S (2005) Non-classical protein secretion in bacteria. BMC Microbiol 5:58

    Article  CAS  Google Scholar 

  24. Krogh A, Larsson B, von Heijne G, Sonnhammer ELL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580

    Article  CAS  Google Scholar 

  25. Kall L, Krogh A, Sonnhammer ELL (2004) A combined transmembrane topology and signal peptide prediction method. J Mol Biol 338:1027–1036

    Article  CAS  Google Scholar 

  26. Kall L, Krogh A, Sonnhammer ELL (2007) Advantages of combined transmembrane topology and signal peptide prediction—the Phobius web server. Nucleic Acids Res 35:W429–W432

    Article  Google Scholar 

  27. van de Werken HJG, Verhaart MRA, VanFossen AL, Willquist K, Lewis DL, Nichols JD, Goorissen HP, Mongodin EF, Nelson KE, van Niel EWJ, Stams AJM, Ward DE, de Vos WM, van der Oost J, Kelly RM, Kengen SWM (2008) Hydrogenomics of the extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus. Appl Environ Microbiol 74:6720–6729

    Article  CAS  Google Scholar 

  28. Pierce Technical Resource (2004) TR00490. Pierce Technical Resource, Rockford, IL., USA

  29. Jiang L, He L, Fountoulakis M (2004) Comparison of protein precipitation methods for sample preparation prior to proteomic analysis. J Chromatogr A 1023:317–320

    Article  CAS  Google Scholar 

  30. Sauve DM, Ho DT, Roberge M (1995) Concentration of dilute protein for gel-electrophoresis. Anal Biochem 226:382–383

    Article  CAS  Google Scholar 

  31. Winston RL, Fitzgerald MC (1998) Concentration and desalting of protein samples for mass spectrometry analysis. Anal Biochem 262:83–85

    Article  CAS  Google Scholar 

  32. Shevchenko A, Tomas H, Havlis J, Olsen JV, Mann M (2006) In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc 1:2856–2860

    Article  CAS  Google Scholar 

  33. Andrews GL, Shuford CM, Burnett JC, Hawkridge AM, Muddiman DC (2009) Coupling of a vented column with splitless nanoRPLC-ESI-MS for the improved separation and detection of brain natriuretic peptide-32 and its proteolytic peptides. J Chromatogr B 877:948–954

    Article  CAS  Google Scholar 

  34. Perkins DN, Pappin DJC, Creasy DM, Cottrell JS (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20:3551–3567

    Article  CAS  Google Scholar 

  35. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate—a practical and powerful approach to multiple testing. J R Stat Soc Ser B Stat Methodol 57:289–300

    Google Scholar 

  36. Weatherly DB, Atwood JA, Minning TA, Cavola C, Tarleton RL, Orlando R (2005) A heuristic method for assigning a false-discovery rate for protein identifications from mascot database search results. Mol Cell Proteomics 4:762–772

    Article  CAS  Google Scholar 

  37. Zakowski J (1931) On the purification of soya-urease through precipitation with acetone and carbonic acids. Hoppe-Seyler's Z. Physiol Chem 202:67–82

    CAS  Google Scholar 

  38. Thongboonkerd V, McLeish KR, Arthur JM, Klein JB (2002) Proteomic analysis of normal human urinary proteins isolated by acetone precipitation or ultracentrifugation. J Am Soc Nephrol 13:119A–119A

    Google Scholar 

  39. Collier TS, Hawkridge AM, Georgianna DR, Payne GA, Muddiman DC (2008) Top-down identification and quantification of stable isotope labeled proteins from Aspergillus flavus using online nano-flow reversed-phase liquid chromatography coupled to a LTQ-FTICR mass spectrometer. Anal Chem 80:4994–5001

    Article  CAS  Google Scholar 

  40. Sahyun M, Alsberg CL (1930) On rabbit liver glycogen and its preparation. J Biol Chem 89:33–39

    CAS  Google Scholar 

  41. Chevallet M, Diemer H, Van Dorssealer A, Villiers C, Rabilloud T (2007) Toward a better analysis of secreted proteins: the example of the myeloid cells secretome. Proteomics 7:1757–1770

    Article  CAS  Google Scholar 

  42. Palmer JW, Gerlough TD (1940) A simple method for preparing antigenic substances from the typhoid bacillus. Science 92:155–156

    Article  CAS  Google Scholar 

  43. Marusyk R, Sergeant A (1980) A simple method for dialysis of small-volume samples. Anal Biochem 105:403–404

    Article  CAS  Google Scholar 

  44. Bergen HR, Vasmatzis G, Cliby WA, Johnson KL, Oberg AL, Muddiman DC (2003) Discovery of ovarian cancer biomarkers in serum using NanoLC electrospray ionization TOF and FT-ICR mass spectrometry. Dis Markers 19:239–249

    CAS  Google Scholar 

  45. Johnson KL, Mason CJ, Muddiman DC, Eckel JE (2004) Analysis of the low molecular weight fraction of serum by LC-dual ESI-FT-ICR mass spectrometry: precision of retention time, mass, and ion abundance. Anal Chem 76:5097–5103

    Article  CAS  Google Scholar 

  46. Basrai MA, Hieter P, Boeke JD (1997) Small open reading frames: beautiful needles in the haystack. Genome Res 7:768–771

    CAS  Google Scholar 

  47. Gough J, Karplus K, Hughey R, Chothia C (2001) Assignment of homology to genome sequences using a library of hidden Markov models that represent all proteins of known structure. J Mol Biol 313:903–919

    Article  CAS  Google Scholar 

  48. Bantscheff M, Schirle M, Sweetman G, Rick J, Kuster B (2007) Quantitative mass spectrometry in proteomics: a critical review. Anal Bioanal Chem 389:1017–1031

    Article  CAS  Google Scholar 

  49. Gao J, Friedrichs MS, Dongre AR, Opiteck GJ (2005) Guidelines for the routine application of the peptide hits technique. J Am Soc Mass Spectrom 16:1231–1238

    Article  CAS  Google Scholar 

  50. Liu HB, Sadygov RG, Yates JR (2004) A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal Chem 76:4193–4201

    Article  CAS  Google Scholar 

  51. Old WM, Meyer-Arendt K, Aveline-Wolf L, Pierce KG, Mendoza A, Sevinsky JR, Resing KA, Ahn NG (2005) Comparison of label-free methods for quantifying human proteins by shotgun proteomics. Mol Cell Proteomics 4:1487–1502

    Article  CAS  Google Scholar 

  52. Zybailov B, Coleman MK, Florens L, Washburn MP (2005) Correlation of relative abundance ratios derived from peptide ion chromatograms and spectrum counting for quantitative proteomic analysis using stable isotope labeling. Anal Chem 77:6218–6224

    Article  CAS  Google Scholar 

  53. Zybailov B, Mosley AL, Sardiu ME, Coleman MK, Florens L, Washburn MP (2006) Statistical analysis of membrane proteome expression changes in Saccharomyces cerevisiae. J Proteome Res 5:2339–2347

    Article  CAS  Google Scholar 

  54. Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577

    Article  CAS  Google Scholar 

  55. Lynd LR, Elander RT, Wyman CE (1996) Likely features and costs of mature biomass ethanol technology. Appl Biochem Biotechnol 57–8:741–761

    Article  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the financial support of the National Institutes of Health (Grant 5T32GM00-8776-08), which supports GLA in the North Carolina State University Molecular Biotechnology Training Program, and the W. M. Keck Foundation. RMK acknowledges support from the US National Science Foundation (CBT0617272) and the Bioenergy Science Center (BESC), a US DOE Bioenergy Research Center supported by the Office of Biological and Environmental Research. DLL acknowledges support from a US Department of Education GAANN Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Muddiman.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00216-010-4102-0

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 551 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muddiman, D., Andrews, G., Lewis, D. et al. Part I: characterization of the extracellular proteome of the extreme thermophile Caldicellulosiruptor saccharolyticus by GeLC-MS2 . Anal Bioanal Chem 398, 377–389 (2010). https://doi.org/10.1007/s00216-010-3955-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-3955-6

Keywords

Navigation