Skip to main content
Log in

Development of a fast liquid chromatography–tandem mass spectrometry method for the determination of endocrine-disrupting compounds in waters

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A fast liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS-MS) method was developed to study five endocrine-disrupting compounds (4-n-nonylphenol, bisphenol A, estrone, 17β-estradiol and 17α-ethinylestradiol) in water. Different columns were tested; the chromatographic separation of the analytes was optimized on a Pinnacle DB biphenylic column with a water–acetonitrile gradient elution, which allowed the separation of the selected endocrine-disrupting compounds (EDCs) in less than 6 min. Quantitative analysis was performed in selected reaction monitoring (SRM) mode; two transitions were chosen for each compound, using the most abundant for quantitation. Calibration curves using bisphenol A-d 16 as internal standard were drawn, showing good correlation coefficients (0.9993–0.9998). All figures of merit of the method were satisfactory; limits of detection were in the low pg range for all analytes. The method was then applied to the determination of the analytes in real water samples: to this aim, polar organic chemical integrative samplers (POCIS) were deployed in the influent and in the effluent of a drinking water treatment plant in Liguria (Italy). The EDC level was rather low in the influent and negligible in the outlet, reflecting the expected function of the treatment plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hill M, Stabile C, Steffen K, Hill A (2002) Environ Pollut 117:295–300

    Article  CAS  Google Scholar 

  2. Jobling S, Casey D, Rodgers-Gray T, Schulte-Oehlmann U, Pawlowski S, Baunbeck T, Turner AP, Tyler CR (2003) Aquat Toxicol 65:205–220

    Article  CAS  Google Scholar 

  3. Madsen SS, Skovbolling S, Nielsen C, Korsgaard B (2004) Aquat Toxicol 68:109–120

    Article  CAS  Google Scholar 

  4. Nice HE, Thorndyke MC, Morritt D, Steele S, Crane M (2000) Mar Pollut Bull 50:491–496

    Article  Google Scholar 

  5. Rogers-Gray TP, Jobling S, Morris S, Kelly C, Kirby S, Janbakhsh A, Harries JE, Waldock MJ, Sumpter JP, Tyler CR (2000) Environ Sci Technol 34:1521–1528

    Article  Google Scholar 

  6. Routledge EJ, Sumpter JP (1996) Environ Toxicol Chem 15:241–248

    Article  CAS  Google Scholar 

  7. Halling-Sorensen B, Nielsen SN, Lanzky PF, Ingerslev F, Holten Lutzhoft HC, Jorgensen SE (1998) Chemosphere 36:357–393

    Article  CAS  Google Scholar 

  8. Joss A, Andersen H, Ternes T, Richle PR, Siegrist H (2004) Environ Sci Technol 38:3047–3055

    Article  CAS  Google Scholar 

  9. Clara M, Kreuzinger N, Strenn B, Gans O, Kroiss H (2005) Water Res 39:97–106

    Article  CAS  Google Scholar 

  10. Kuster M, Lopez de Alda MJ, Rodriguez-Mozaz S, Barceló D (2007) In: M Petrovic, D Barceló (Eds), Comprehensive Analytical Chemistry, Elsevier

  11. Kuster M, Azevedo DA, López de Alda MJ, Aquino Neto FR, Barceló D (2009) Environ Int 35:997–1003

    Article  CAS  Google Scholar 

  12. Belfroid AC, Van der Horst A, Vethaak AD, Schafer AJ, Rijs GBJ, Wegener J, Cofino WP (1999) Sci Total Environ 225:101–108

    Article  CAS  Google Scholar 

  13. Kuch HM, Ballschmiter K (2001) Environ Sci Technol 35:3201–3206

    Article  CAS  Google Scholar 

  14. Petrovic M, Sole M, Lopez de Alda MJ, Barcelò D (2002) Environ Toxicol Chem 21:2146–2156

    Article  CAS  Google Scholar 

  15. Routledge EJ, Sheahan D, Desbrow C, Brighty GC, Waldock M, Sumpter JP (1998) Environ Sci Technol 32:1559–1565

    Article  CAS  Google Scholar 

  16. Ternes TA, Meisenheimer M, McDowell D, Sacher F, Brauch HJ, Haist-Gulde B, Preuss G, Wilme U, Zulei-Seibert N (2002) Environ Sci Technol 36:3855–3863

    Article  CAS  Google Scholar 

  17. Benotti MJ, Stanford BD, Wert EC, Snyder SA (2009) Water Res 43:1513–1522

    Article  CAS  Google Scholar 

  18. Broséus R, Vincent S, Aboulfadl K, Daneshvar A, Sauvé S, Barbeau B, Prévost M (2009) Water Res 43:4707–4717

    Article  Google Scholar 

  19. Lopez de Alda MJ, Diaz-Cruz S, Petrovic M, Barcelò D (2003) J Chromatogr A 1000:503–526

    Google Scholar 

  20. Bacaloni A, Cavaliere C, Faberi A, Foglia P, Samperi R, Lagana A (2005) Anal Chim Acta 531:229–237

    Article  CAS  Google Scholar 

  21. Gallart-Ayala H, Moyano E, Galceran MT (2009) Mass Spectrom Rev doi:10.1002/mas.20234

  22. Careri M, Elviri L, Mangia A, Zagnoni I (2003) Chromatographia 57:321–327

    Article  CAS  Google Scholar 

  23. Alvarez DA, Petty JD, Huckins JN, Jones-Lepp TL, Getting DT, Goddard JP, Manahan SE (2004) Environ Toxicol Chem 23:1640–1648

    Article  CAS  Google Scholar 

  24. Alvarez DA, Stackelberg PE, Petty JD, Huckins JN, Furlong ET, Zaugg SD, Meyer MT (2005) Chemosphere 61:610–622

    Article  CAS  Google Scholar 

  25. Vermeirssen EML, Korner O, Schonenberger R, Suter MJF, Burkhardt-Holm P (2005) Environ Sci Technol 39:8191–8198

    Article  CAS  Google Scholar 

  26. Alvarez DA, Huckins JN, Petty JD, Jones-Lepp T, Stuer-Lauridsen F, Getting DT, Goddard JP, Gravell A (2007) In: M Petrovic, D Barceló (Eds), Comprehensive Analytical Chemistry, Elsevier

  27. Zhang Z, Hibberd A, Zhou JL (2008) Anal Chim Acta 607:37–44

    Article  CAS  Google Scholar 

  28. Liscio C, Magi E, Di Carro M, Suter MJF, Vermeirssen ELM (2009) Environ Pollut 157:2716–2721

    Article  CAS  Google Scholar 

  29. Magi E, Di Carro M, Liscio C (2010) Anal Bioanal Chem doi:101007/s00216-010-3656-1

  30. Inoue K, Kawaguchi M, Funakoshi Y, Nakazawa H (2003) J Chromatogr B 798:17–23

    Article  CAS  Google Scholar 

  31. Ballesteros-Gómez A, Rubio S, Pérez-Bendito D (2009) J Chromatogr A 1216:449–469

    Article  Google Scholar 

  32. Inoue K, Yamaguchi A, Wada M, Yoshimura Y, Makino T, Nakazawa H (2001) J Chromatogr B 765:121–126

    Article  CAS  Google Scholar 

  33. Shao B, Han H, Hu J, Zhao J, Wu G, Xue Y, Ma Y, Zhang S (2005) Anal Chim Acta 530:245–252

    Article  CAS  Google Scholar 

  34. Inoue K, Yoshida S, Nakayama S, Ito R, Okanouchi N, Nakazawa H (2006) Arch Environ Contam Toxicol 51:503–508

    Article  CAS  Google Scholar 

  35. Hogenboom AC, Hofman MP, Kok SJ, Niessen WMA, Brinkman UAT (2000) J Chromatogr A 892:379–390

    Article  CAS  Google Scholar 

  36. Choi BK, Hercules DM, Gusev AI, Fresenius J (2001) Anal Chem 369:370–377

    Article  CAS  Google Scholar 

  37. Hu J, Zhang H, Chang H (2005) J Chromatogr A 1070:221–224

    Google Scholar 

  38. Benijts T, Dams R, Gunther W, Lambert W, De Leenheer A (2002) Rapid Commun Mass Sp 16:1358–1364

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emanuele Magi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Carro, M., Scapolla, C., Liscio, C. et al. Development of a fast liquid chromatography–tandem mass spectrometry method for the determination of endocrine-disrupting compounds in waters. Anal Bioanal Chem 398, 1025–1034 (2010). https://doi.org/10.1007/s00216-010-3985-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-3985-0

Keywords

Navigation