Skip to main content
Log in

A methylation-stimulated DNA machine: an autonomous isothermal route to methyltransferase activity and inhibition analysis

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The operation of DNA nanomachines is generally triggered by either conformational changes of DNA nanostructure or external environmental stimuli. In the present study, we demonstrate an alternative driving force, DNA methylation, to stimulate DNA machine operation. DNA methylation changes neither DNA sequence and conformation nor external environment, however, blocks its cleavage by corresponding methylation-sensitive restriction endonuclease. We thus designed a strand displacement amplification DNA machine, which could be stimulated upon DNA methylation and then autonomously generates accumulated amounts of peroxidase-mimicking DNAzyme signaling machine products in an isothermal manner. The machine product DNAzyme could catalyze the H2O2-mediated oxidation of 2,2′-azino-bis(3-ethylbenzo thiazoline-6-sulfonic acid) (ABTS2−) to a colored product ABTS·−. This methylation-stimulated DNA machine was further used as a colorimetric assay for analysis of methyltransferases activities and screening of methylation inhibitors. As compared with classical methylation assay, this facile isothermal DNA machine avoids the introduction of methylation-specific polymerase chain reaction and radioactive labels, which might be employed as an effective tool for DNA methylation analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bath J, Turberfield AJ (2007) Nat Nanotechnol 2:275–284

    Article  CAS  Google Scholar 

  2. Voigt NV, Torring T, Rotaru A, Jacobsen MF, Ravnsbaek JB, Subramani R, Mamdouh W, Kjems J, Mokhir A, Besenbacher F, Gothelf KV (2010) Nat Nanotechnol 5:200–203

    Article  CAS  Google Scholar 

  3. Park SH, Yin P, Liu Y, Reif JH, LaBean TH, Yan H (2005) Nano Lett 5:729–733

    Article  CAS  Google Scholar 

  4. Nutiu R, Li YF (2004) Chem Eur J 10:1868–1876

    Article  CAS  Google Scholar 

  5. Lu Y, Liu JW (2007) Acc Chem Res 40:315–323

    Article  CAS  Google Scholar 

  6. Liu DS, Balasubramanian S (2003) Angew Chem Int Ed 42:5734–5736

    Article  CAS  Google Scholar 

  7. Mao CD, Sun WQ, Shen ZY, Seeman NC (1999) Nature 397:144–146

    Article  CAS  Google Scholar 

  8. Liu HJ, Xu Y, Li FY, Yang Y, Wang WX, Song YL, Liu DS (2007) Angew Chem Int Ed 46:2515–2517

    Article  CAS  Google Scholar 

  9. Liang XG, Nishioka H, Takenaka N, Asanuma H (2008) Chembiochem 9:702–705

    Article  CAS  Google Scholar 

  10. Yang Y, Liu G, Liu HJ, Li D, Fan CH, Liu DS (2010) Nano Lett 10:1393–1397

    Article  CAS  Google Scholar 

  11. Frasconi M, Tel-Vered R, Elbaz J, Willner I (2010) J Am Chem Soc 132:2029–2036

    Article  CAS  Google Scholar 

  12. Simmel FC, Dittmer WU (2005) Small 1:284–299

    Article  CAS  Google Scholar 

  13. Xu W, Xue XJ, Li TH, Zeng HQ, Liu XG (2009) Angew Chem Int Ed 48:6849–6852

    Article  CAS  Google Scholar 

  14. Liedl T, Sobey TL, Simmel FC (2007) Nano Today 2:36–41

    Article  Google Scholar 

  15. Bird AP (1986) Nature 321:209–213

    Article  CAS  Google Scholar 

  16. Schubeler D, Lorincz MC, Cimbora DM, Telling A, Feng YQ, Bouhassira EE, Groudine M (2000) Mol Cell Biol 20:9103–9112

    Article  CAS  Google Scholar 

  17. Robertson KD, Wolffe AP (2000) Nat Rev Genet 1:11–19

    Article  CAS  Google Scholar 

  18. Siegfried Z, Eden S, Mendelsohn M, Feng X, Tsuberi BZ, Cedar H (1999) Nat Genet 22:203–206

    Article  CAS  Google Scholar 

  19. Walker GT, Fraiser MS, Schram JL, Little MC, Nadeau JG, Malinowski DP (1992) Nucleic Acids Res 20:1691–1696

    Article  CAS  Google Scholar 

  20. Weizmann Y, Beissenhirtz MK, Cheglakov Z, Nowarski R, Kotler M, Willner I (2006) Angew Chem Int Ed 45:7384–7388

    Article  CAS  Google Scholar 

  21. Shlyahovsky B, Li D, Weizmann Y, Nowarski R, Kotler M, Willner I (2007) J Am Chem Soc 129:3814–3815

    Article  CAS  Google Scholar 

  22. Li D, Wieckowska A, Willner I (2008) Angew Chem Int Ed 47:3927–3931

    Article  CAS  Google Scholar 

  23. Zhu CF, Wen YQ, Li D, Wang LH, Song SP, Fan CH, Willner I (2009) Chem Eur J 15:11898–11903

    Article  CAS  Google Scholar 

  24. Willner I, Shlyahovsky B, Zayats M, Willner B (2008) Chem Soc Rev 37:1153–1165

    Article  CAS  Google Scholar 

  25. Goffin J, Eisenhauer E (2002) Ann Oncol 13:1699–1716

    Article  CAS  Google Scholar 

  26. Li J, Yan HF, Wang KM, Tan WH, Zhou XW (2007) Anal Chem 79:1050–1056

    Article  CAS  Google Scholar 

  27. Liu T, Zhao J, Zhang DM, Li GX (2010) Anal Chem 82:229–233

    Article  CAS  Google Scholar 

  28. Li W, Liu ZL, Lin H, Nie Z, Chen JH, Xu XH, Yao SZ (2010) Anal Chem 82:1935–1941

    Article  CAS  Google Scholar 

  29. Wood RJ, McKelvie JC, Maynard-Smith MD, Roach PL (2010) Nucleic Acids Res 38:e107

    Article  Google Scholar 

  30. Song GT, Chen CE, Ren JS, Qu XG (2009) ACS Nano 3:1183–1189

    Article  CAS  Google Scholar 

  31. Feng FD, Tang YL, He F, Yu MH, Duan XR, Wang S, Li YH, Zhu DB (2007) Adv Mater 19:3490–3495

    Article  CAS  Google Scholar 

  32. Lyko F, Brown R (2005) J Natl Cancer Inst 97:1498–1506

    Article  CAS  Google Scholar 

  33. Brueckner B, Boy RG, Siedlecki P, Musch T, Kliem HC, Zielenkiewicz P, Suhai S, Wiessler M, Lyko F (2005) Cancer Res 65:6305–6311

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (20873175, 21075128, and 20725516), Shanghai Municipal Commission for Science and Technology (0952 nm0460, 10QA1408200), Ministry of Health (2009ZX10004-301), and Ministry of Science and Technology (2007CB936000 and 2007AA06A406).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Di Li.

Additional information

Published in the special issue Analytical and Bioanalytical Science in China with Guest Editors Lihua Zhang, Qiankun Zhuang, and Yukui Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 527 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, C., Wen, Y., Peng, H. et al. A methylation-stimulated DNA machine: an autonomous isothermal route to methyltransferase activity and inhibition analysis. Anal Bioanal Chem 399, 3459–3464 (2011). https://doi.org/10.1007/s00216-010-4137-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-4137-2

Keywords

Navigation