Skip to main content
Log in

Matrix-free and material-enhanced laser desorption/ionization mass spectrometry for the analysis of low molecular weight compounds

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) for the analysis of low molecular weight (LMW) compounds, such as pharmacologically active constituents or metabolites, is usually hampered by employing conventional MALDI matrices owing to interferences caused by matrix molecules below 700 Da. As a consequence, interpretation of mass spectra remains challenging, although matrix suppression can be achieved under certain conditions. Unlike the conventional MALDI methods which usually suffer from background signals, matrix-free techniques have become more and more popular for the analysis of LMW compounds. In this review we describe recently introduced materials for laser desorption/ionization (LDI) as alternatives to conventionally applied MALDI matrices. In particular, we want to highlight a new method for LDI which is referred to as matrix-free material-enhanced LDI (MELDI). In matrix-free MELDI it could be clearly shown, that besides chemical functionalities, the material’s morphology plays a crucial role regarding energy-transfer capabilities. Therefore, it is of great interest to also investigate parameters such as particle size and porosity to study their impact on the LDI process. Especially nanomaterials such as diamond-like carbon, C60 fullerenes and nanoparticulate silica beads were found to be excellent energy-absorbing materials in matrix-free MELDI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Najam-ul-Haq M, Rainer M, Szabo Z, Vallant R, Huck CW, Bonn GK (2007) J Biochem Biophys Meth 70(2):319–328

    Article  CAS  Google Scholar 

  2. Guo Z, Ganawi AAA, Liu Q, He L (2006) Anal Bioanal Chem 384(3):584–592

    Article  CAS  Google Scholar 

  3. Fuchs B, Schiller J (2009) Curr Org Chem 13(16):1664–1681

    Article  CAS  Google Scholar 

  4. Karas M, Bachmann D, Hillenkamp F (1985) Anal Chem 57(14):2935–2939

    Article  CAS  Google Scholar 

  5. Beavis RC, Chait BT (1989) Rapid Commun Mass Spectrom 3(7):233–237

    Article  CAS  Google Scholar 

  6. Beavis RC, Chait BT, Standing KG (1989) Rapid Commun Mass Spectrom 3(12):436–439

    Article  CAS  Google Scholar 

  7. Harvey DJ (1996) J Chromatogr A 720(1–2):429–446

    Article  CAS  Google Scholar 

  8. Hashir MA, Stecher G, Bakry R, Kasemsook S, Blassnig B, Feuerstein I, Abel G, Popp M, Bobleter O, Bonn GK (2007) Rapid Commun Mass Spectrom 21(16):2759–2769

    Article  CAS  Google Scholar 

  9. Hillenkamp F, Karas M, Beavis RC, Chait BT (1991) Anal Chem 63(24):1193–1202

    Article  Google Scholar 

  10. Strupat K, Karas M, Hillenkamp F (1991) Int J Mass Spectrom Ion Process 111:89–102

    Article  CAS  Google Scholar 

  11. Beavis RC, Bridson JN (1993) Appl Phys 26:442–447

    CAS  Google Scholar 

  12. Beavis RC, Chaudhary T, Chait BT (1992) Org Mass Spectrom 27:156–159

    Article  CAS  Google Scholar 

  13. Moseley MA, Sheeley DM, Blackburn RK, Johnson RL, Merrill BM (1998) Mass Spectrometry of Biological Materials (second ed.) Dekker, New York, p 162

  14. Karas M, Hillenkamp F (1988) Anal Chem 60(20):2299–2301

    Article  CAS  Google Scholar 

  15. Kochling HJ, Biemannn K (1995) In: Proceedings of the 43rd annual ASMS conference on mass spectrometry and allied topics; Atlanta, GA, May 21–26, p 1225

  16. Dai Y, Whittal RM, Li L (1996) Anal Chem 68(15):2494–2500

    Article  CAS  Google Scholar 

  17. Weinberger SR, Boernsen KO, Finchy JW, Roberstson V, Musselman BD (1993) In: Proceedings of the 41st annual ASMS conference on mass Spectrometry and allied Topics; San Francisco, May 31–June 5, p 775a

  18. Karas M, Bachmann D, Bahr U, Hillenkamp F (1987) Int J Mass Spectrom Ion Process 78:53–68

    Article  CAS  Google Scholar 

  19. Dreisewerd K (2003) Chem Rev 103(2):395–425

    Article  CAS  Google Scholar 

  20. Knochenmuss R (2006) Analyst 131(9):966–986

    Article  CAS  Google Scholar 

  21. Zenobi R, Knochenmuss R (2006) Chem Rev 17:337–366

    Google Scholar 

  22. Krueger R, Pfenninger A, Fournier I, Gückmann M, Karas M (2001) Anal Chem 73:5812–5821

    Article  CAS  Google Scholar 

  23. Karas M, Krueger R (2003) Chem Rev 103(2):427–439

    Article  CAS  Google Scholar 

  24. Karas M, Gluckmann M, Schafer JJ (2000) Mass Spectrom 35:1–12

    Article  CAS  Google Scholar 

  25. Zenobi R, Knochenmuss R (1998) Mass Spectrom Rev 17(5):337–366

    Article  CAS  Google Scholar 

  26. Dreisewerd K, Berkenkamp S, Leisner A, Rohlfing A, Menzel C (2003) Int J Mass Spectrom 226(1):189–209

    Article  CAS  Google Scholar 

  27. Vastola FJ, Mumma RO, Pirone AJ (1970) Org Mass Spectrom 3:101–104

    Article  CAS  Google Scholar 

  28. Hillenkamp F, Unsöld E, Kaufmann R, Nitsche RA (1975) Nature 256:119–120

    Article  CAS  Google Scholar 

  29. Posthumus MA, Kistenmaker PG, Meuzelaar HLC (1978) Anal Chem 50:985–991

    Article  CAS  Google Scholar 

  30. Tanaka K, Waki H, Ido Y, Akita S, Yoshida Y, Yoshida T (1988) Rapid Commun Mass Spectrom 2(8):151–153

    Article  CAS  Google Scholar 

  31. Wei J, Buriak JM, Siuzdak G (1999) Nature 399(6733):243–246

    Article  CAS  Google Scholar 

  32. Budimir N, Blais J, Fournier F, Tabet J (2006) Rapid Commun Mass Spectrom 20(4):680–684

    Article  CAS  Google Scholar 

  33. Thomas JJ, Shen Z, Crowell JE, Finn MG, Siuzdak G (2001) Proc Natl Acad Sci USA 98(9):4932–4937

    Article  CAS  Google Scholar 

  34. Lewis WG, Shen Z, Finn MG, Siuzdak G (2003) Int J Mass Spectrom 226(1):107–116

    Article  CAS  Google Scholar 

  35. Shen Z, Thomas JJ, Averbuj C, Broo KM, Engelhard M, Crowell JE, Finn MG, Siuzdak G (2001) Anal Chem 73(3):612–619

    Article  CAS  Google Scholar 

  36. Dattelbaum AM, Iyer S (2006) Expert Rev Proteomics 3(1):153–161

    Article  CAS  Google Scholar 

  37. Credo G, Hewitson H, Benevides C, Bouvier ESP (2004) MRS Symp Proc 808:471–476

    Article  CAS  Google Scholar 

  38. Lee CS, Lee JH, Kang KK, Song HM, Kim IH, Rhee HK, Kim BG (2007) Biotechnol Bioprocess Eng 12(2):174–179

    Article  CAS  Google Scholar 

  39. Górecka-Drzazga A, Bargiel S, Walczak R, Dziuban JA, Kraj A, Dylag T, Silberring J (2004) Sens Actuators B Chem 103(1–2):206–212

    Article  Google Scholar 

  40. Schottner G (2001) Chem Mater 13(10):3422–3435

    Article  CAS  Google Scholar 

  41. Yuan M, Shan Z, Tian B, Tu B, Yang P, Zhao D (2005) Microporous Mesoporous Mater 78(1):37–41

    Article  CAS  Google Scholar 

  42. Lin YS, Chen YC (2002) Anal Chem 74(22):5793–5798

    Article  CAS  Google Scholar 

  43. Go EP, Apon JV, Luo G, Saghatelian A, Daniels RH, Sahi V, Dubrow R, Cravatt BF, Vertes A, Siuzdak G (2005) Anal Chem 77(6):1641–1646

    Article  CAS  Google Scholar 

  44. McLean JA, Stumpo KA, Russell DH (2005) J Am Chem Soc 127(15):5304–5305

    Article  CAS  Google Scholar 

  45. Peterson DS, Luo Q, Hilder EF, Svec F, Fréchet JMJ (2004) Rapid Commun Mass Spectrom 18(13):1504–1512

    Article  CAS  Google Scholar 

  46. Kinumi T, Saisu T, Takayama M, Niwa H (2000) J Mass Spectrom 35(3):417–422

    Article  CAS  Google Scholar 

  47. Ren S, Zhang L, Cheng Z, Guo Y (2005) J Am Soc Mass Spectrom 16(3):333–339

    Article  CAS  Google Scholar 

  48. Wang C, Li J, Yao S, Guo Y, Xia X (2007) Anal Chim Acta 604(2):158–164

    Article  CAS  Google Scholar 

  49. Chen WY, Wang LS, Chiu HT, Chen YC, Lee CY (2004) J Am Soc Mass Spectrom 15(11):1629–1635

    Article  CAS  Google Scholar 

  50. Ugarov MV, Egan T, Khabashesku DV, Schultz JA, Peng H, Khabashesku VN, Furutani H, Prather KS, Wang HWJ, Jackson SN (2004) Anal Chem 76(22):6734–6742

    Article  CAS  Google Scholar 

  51. Michalak L, Fisher KJ, Alderdice DS, Jardine DR, Willett GD (1994) Org Mass Spectrom 29(9):512–515

    Article  CAS  Google Scholar 

  52. Hopwood FG, Michalak L, Alderdice DS, Fisher KJ, Wlllet GD (1994) Rapid Commun Mass Spectrom 8(11):881–885

    Article  CAS  Google Scholar 

  53. Shiea J, Huang JP, Teng CF, Jeng J, Wang LY, Chiang LY (2003) Anal Chem 75:3587

    Article  CAS  Google Scholar 

  54. Montsko G, Vaczy A, Maasz G, Mernyak E, Frank E, Bay C, Kadar Z, Ohmacht R, Wolfling J, Mark L (2009) Anal Bioanal Chem 395(3):869–874

    Article  CAS  Google Scholar 

  55. Dale MJ, Knochenmuss R, Zenobi R (1996) Anal Chem 68(19):3321–3329

    Article  CAS  Google Scholar 

  56. Sunner J, Dratz E, Chen Y (1995) Anal Chem 67:4335

    Article  CAS  Google Scholar 

  57. Black C, Poile C, Langley J, Herniman J (2006) Rapid Commun Mass Spectrom 20(7):1053–1060

    Article  CAS  Google Scholar 

  58. Kim HJ, Lee JK, Park SJ, Ro HW, Yoo DY, Yoon DY (2000) Anal Chem 72(22):5673–5678

    Article  CAS  Google Scholar 

  59. Kim J, Paek K, Kang W (2002) Bull Korean Chem Soc 23(2):315–319

    Article  Google Scholar 

  60. Taira S, Kitajima K, Katayanagi H, Ichiishi E, Ichiyanagi Y (2009) Sci Technol Adv Mater 10:034602

    Article  Google Scholar 

  61. Lin PC, Tseng MC, Su AK, Chen YJ, Lin CC (2007) Anal Chem 79(9):3401–3408

    Article  CAS  Google Scholar 

  62. Knochenmuss R, Dubois F, Dale MJ, Zenobi R (1996) Rapid Commun Mass Spectrom 10:871–877

    Article  CAS  Google Scholar 

  63. Okuno S, Arakawa R, Okamoto K, Matsui Y, Seki S, Kozawa T, Tagawa S, Wada Y (2005) Anal Chem 77:5364–5369

    Article  CAS  Google Scholar 

  64. Peterson DS (2007) Mass Spectrom Rev 26(1):19–34

    Article  CAS  Google Scholar 

  65. Alimpiev S, Nikiforov S, Karavanskii V, Minton T, Sunner J (2001) J Chem Phys 115:1891–1901

    Article  CAS  Google Scholar 

  66. Finkel NH, Prevo BG, Velev OD, He L (2006) Anal Chem 77:1088–1095

    Article  Google Scholar 

  67. Najam-ul-Haq M, Rainer M, Huck CW, Hausberger P, Kraushaar H, Bonn GK (2008) Anal Chem 80(19):7467–7472

    Article  CAS  Google Scholar 

  68. Robertson J (2002) Mater Sci Eng R37:129

    CAS  Google Scholar 

  69. Hashir MA, Stecher G, Mayr S, Bonn GK (2009) Int J Mass Spectrom 279(1):15–24

    Article  CAS  Google Scholar 

  70. Hashir MA, Stecher G, Bonn GK (2008) Rapid Commun Mass Spectrom 22(14):2185–2194

    Article  CAS  Google Scholar 

  71. Szabo Z, Vallant RM, Takátsy A, Bakry R, Najam-ul-Haq M, Rainer M, Huck CW, Bonn GK (2010) J Mass Spectrom 45(5):545–552

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Austrian Genome Program (Gen-AU, Vienna, Austria) and by the SFB Project (Vienna, Austria).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Rainer.

Additional information

Published in the special issue Analytical Sciences in Austria with Guest Editors G. Allmaier, W. Buchberger and K. Francesconi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rainer, M., Qureshi, M.N. & Bonn, G.K. Matrix-free and material-enhanced laser desorption/ionization mass spectrometry for the analysis of low molecular weight compounds. Anal Bioanal Chem 400, 2281–2288 (2011). https://doi.org/10.1007/s00216-010-4138-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-4138-1

Keywords

Navigation