Skip to main content
Log in

Micropreconcentration units based on carbon nanotubes (CNT)

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Carbon nanotubes (CNT) have some highly desirable sorbent characteristics which make them attractive for a variety of analytical applications. High adsorption capacity and rapid desorbability make CNT excellent candidates for micro-scale devices for gas and liquid-phase analysis. In gas-phase analysis one can implement a micro-concentrator or a micro-sorbent trap, which have been used in a variety of on-line chromatography and sensing applications. Interesting liquid-phase microtrapping applications include micro-scale solid-phase extraction (μ-SPE) and solid-phase micro extraction (SPME). In addition, the ease of surface functionalization, self assembly by chemical vapor deposition, and the formation of diverse polymer composites may well make CNT the high-performance sorbent of the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Saito Y, Uemura S (2000) Field emission from carbon nanotubes and its application to electron sources. Carbon 38(2):169–182

    Article  CAS  Google Scholar 

  2. Popov VN (2004) Carbon nanotubes: properties and application. Mater Sci Eng R: Reports 43(3):61–102

    Article  CAS  Google Scholar 

  3. Zeng Q, Li Z, Zhou Y (2006) Synthesis and application of carbon nanotubes. J Nat Gas Sci Eng 15(3):235–246

    Article  CAS  Google Scholar 

  4. Gooding JJ (2005) Nanostructuring electrodes with carbon nanotubes: a review on electrochemistry and applications for sensing. Electrochim Acta 50(15):3049–3060

    Article  CAS  Google Scholar 

  5. Li C, Thostenson ET, Chou T-W (2008) Sensors and actuators based on carbon nanotubes and their composites: a review. Compos Sci Technol 68(6):1227–1249

    Article  CAS  Google Scholar 

  6. Vairavapandian D, Vichchulada P, Lay MD (2008) Preparation and modification of carbon nanotubes: review of recent advances and applications in catalysis and sensing. Anal Chim Acta 626(2):119–129

    Article  CAS  Google Scholar 

  7. Long RQ, Yang RT (2001) Carbon nanotubes as a superior sorbent for nitrogen oxides. Ind Eng Chem Res 40(20):4288–4291

    Article  CAS  Google Scholar 

  8. Shih Y-H, Li M-S (2008) Adsorption of selected volatile organic vapors on multiwall carbon nanotubes. J Hazard Mater 154(1-3):21–28

    Article  CAS  Google Scholar 

  9. Wang Y-R, Hu P, Liang Q-L, Luo G-A, Wang Y-M (2008) Application of carbon nanotube modified electrode in bioelectroanalysis. Chin J Anal Chem 36(8):1011–1016

    Article  CAS  Google Scholar 

  10. Green MJ, Behabtu N, Pasquali M, Adams WW (2009) Nanotubes as polymers. Polymer 50(21):4979–4997

    Article  CAS  Google Scholar 

  11. Valcarcel M, Cardenas S, Simonet BM (2007) Role of carbon nanotubes in analytical science. Anal Chem 79(13):4788–4797

    Article  CAS  Google Scholar 

  12. Valcárcel M, Cárdenas S, Simonet BM, Moliner-Martínez Y, Lucena R (2008) Carbon nanostructures as sorbent materials in analytical processes. Trends Anal Chem 27(1):34–43

    Article  CAS  Google Scholar 

  13. Richardson SD (2008) Environmental mass spectrometry: emerging contaminants and current issues. Anal Chem 80(12):4373–4402

    Article  CAS  Google Scholar 

  14. Vukovic GD, Marinkovic AD, Colic M, Ristic MÐ, Aleksic R, Peric-Grujic AA, Uskokovic PS (2010) Removal of cadmium from aqueous solutions by oxidized and ethylenediamine-functionalized multi-walled carbon nanotubes. Chem Eng J 157(1):238–248

    Article  CAS  Google Scholar 

  15. Yao Y, Xu F, Chen M, Xu Z, Zhu Z (2010) Adsorption behavior of methylene blue on carbon nanotubes. Bioresour Technol 101(9):3040–3046

    Article  CAS  Google Scholar 

  16. Saridara C, Mitra S (2005) Chromatography on self-assembled carbon nanotubes. Anal Chem 77(21):7094–7097

    Article  CAS  Google Scholar 

  17. Karwa M, Mitra S (2006) Gas chromatography on self-assembled, single-walled carbon nanotubes. Anal Chem 78(6):2064–2070

    Article  CAS  Google Scholar 

  18. Yuan L-M, Ren C-X, Li L, Ai P, Yan Z-H, Zi M, Li Z-Y (2006) Single-walled carbon nanotubes used as stationary phase in GC. Anal Chem 78(18):6384–6390

    Article  CAS  Google Scholar 

  19. Hussain CM, Saridara C, Mitra S (2010) Self-assembly of carbon nanotubes via ethanol chemical vapor deposition for the synthesis of gas chromatography columns. Anal Chem 82(12):5184–5188

    Article  CAS  Google Scholar 

  20. Hussain CM, Saridara C, Mitra S (2008) Microtrapping characteristics of single and multi-walled carbon nanotubes. J Chromatogr A 1185(2):161–166

    Article  CAS  Google Scholar 

  21. Hussain CM, Saridara C, Mitra S (2008) Carbon nanotubes as sorbents for the gas phase preconcentration of semivolatile organics in a microtrap. Analyst 133(8):1076–1082

    Article  CAS  Google Scholar 

  22. Brukh R, Mitra S (2006) Mechanism of carbon nanotube growth by CVD. Chem Phys Lett 424(1–3):126–132

    Article  CAS  Google Scholar 

  23. Karwa M, Iqbal Z, Mitra S (2006) Scaled-up self-assembly of carbon nanotubes inside long stainless steel tubing. Carbon 44(7):1235–1242

    Article  CAS  Google Scholar 

  24. Brukh R, Sae-Khow O, Mitra S (2008) Stabilizing single-walled carbon nanotubes by removal of residual metal catalysts. Chem Phys Lett 459(1–6):149–152

    Article  CAS  Google Scholar 

  25. Valcárcel M, Simonet BM, Cárdenas S, Suárez B (2005) Present and future applications of carbon nanotubes to analytical science. Anal Bioanal Chem 382(8):1783–1790

    Article  CAS  Google Scholar 

  26. Kowalczyk P, Brualla L, Żywociński A, Bhatia SK (2007) Single-walled carbon nanotubes: efficient nanomaterials for separation and on-board vehicle storage of hydrogen and methane mixture at room temperature? J Phys Chem C 111(13):5250–5257

    Article  CAS  Google Scholar 

  27. Munoz J, Gallego M, Valcarcel M (2005) Speciation of organometallic compounds in environmental samples by gas chromatography after flow preconcentration on fullerenes and nanotubes. Anal Chem 77(16):5389–5395

    Article  CAS  Google Scholar 

  28. Saridara C, Brukh R, Iqbal Z, Mitra S (2005) Preconcentration of volatile organics on self-assembled, carbon nanotubes in a microtrap. Anal Chem 77(4):1183–1187

    Article  CAS  Google Scholar 

  29. Najam-ul-Haq M, Rainer M, Huck CW, Hausberger P, Kraushaar H, Bonn GK (2008) Nanostructured diamond-like carbon on digital versatile disc as a matrix-free target for laser desorption/ionization mass spectrometry. Anal Chem 80(19):7467–7472

    Article  CAS  Google Scholar 

  30. Wang J, Chen G, Chatrathi MP, Musameh M (2003) Capillary electrophoresis microchip with a carbon nanotube-modified electrochemical detector. Anal Chem 76(2):298–302

    Article  CAS  Google Scholar 

  31. Chung J, Lee J (2003) Nanoscale gap fabrication and integration of carbon nanotubes by micromachining. Sens Actuators, A 104(3):229–235

    Article  CAS  Google Scholar 

  32. Rivas GA, Rubianes MD, Rodríguez MC, Ferreyra NF, Luque GL, Pedano ML, Miscoria SA, Parrado C (2007) Carbon nanotubes for electrochemical biosensing. Talanta 74(3):291–307

    Article  CAS  Google Scholar 

  33. Yumura M, Ohshima S, Uchida K, Tasaka Y, Kuriki Y, Ikazaki F, Saito Y, Uemura S (1999) Synthesis and purification of multi-walled carbon nanotubes for field emitter applications. Diamond Relat Mater 8(2–5):785–791

    Article  CAS  Google Scholar 

  34. Niyogi S, Hamon MA, Hu H, Zhao B, Bhowmik P, Sen R, Itkis ME, Haddon RC (2002) Chemistry of single-walled carbon nanotubes. Acc Chem Res 35(12):1105–1113

    Article  CAS  Google Scholar 

  35. Hou P-X, Liu C, Cheng H-M (2008) Purification of carbon nanotubes. Carbon 46(15):2003–2025

    Article  CAS  Google Scholar 

  36. MacKenzie K, Dunens O, Harris AT (2009) A review of carbon nanotube purification by microwave assisted acid digestion. Sep Purif Technol 66(2):209–222

    Article  CAS  Google Scholar 

  37. Heras A, Colina A, López-Palacios J, Ayala P, Sainio J, Ruiz V, Kauppinen EI (2009) Electrochemical purification of carbon nanotube electrodes. Electrochem Commun 11(7):1535–1538

    Article  CAS  Google Scholar 

  38. Hu H, Zhao B, Itkis ME, Haddon RC (2003) Nitric acid purification of single-walled carbon nanotubes. J Phys Chem B 107(50):13838–13842

    Article  CAS  Google Scholar 

  39. Wang Y, Iqbal Z, Malhotra SV (2005) Functionalization of carbon nanotubes with amines and enzymes. Chem Phys Lett 402(1–3):96–101

    Article  CAS  Google Scholar 

  40. Aitchison TJ, Ginic-Markovic M, Matisons JG, Simon GP, Fredericks PM (2007) Purification, cutting, and sidewall functionalization of multiwalled carbon nanotubes using potassium permanganate solutions. J Phys Chem C 111(6):2440–2446

    Article  CAS  Google Scholar 

  41. Avilés F, Cauich-Rodríguez JV, Moo-Tah L, May-Pat A, Vargas-Coronado R (2009) Evaluation of mild acid oxidation treatments for MWCNT functionalization. Carbon 47(13):2970–2975

    Article  CAS  Google Scholar 

  42. Wick P, Manser P, Limbach LK, Dettlaff-Weglikowska U, Krumeich F, Roth S, Stark WJ, Bruinink A (2007) The degree and kind of agglomeration affect carbon nanotube cytotoxicity. Toxicol Lett 168(2):121–131

    Article  CAS  Google Scholar 

  43. Wang Y, Iqbal Z, Mitra S (2005) Microwave-induced rapid chemical functionalization of single-walled carbon nanotubes. Carbon 43(5):1015–1020

    Article  CAS  Google Scholar 

  44. Wang Y, Iqbal Z, Mitra S (2005) Rapidly functionalized, water-dispersed carbon nanotubes at high concentration. J Am Chem Soc 128(1):95–99

    Article  CAS  Google Scholar 

  45. Wang Y, Iqbal Z, Mitra S (2006) Rapid, low temperature microwave synthesis of novel carbon nanotube-silicon carbide composite. Carbon 44(13):2804–2808

    Article  CAS  Google Scholar 

  46. Dyke CA, Tour JM (2004) Covalent functionalization of single-walled carbon nanotubes for materials applications. J Phys Chem A 108(51):11151–11159

    Article  CAS  Google Scholar 

  47. Kharisov BI, Kharissova OV, Leija Gutierrez H, Ortiz MeÌndez U (2008) Recent advances on the soluble carbon nanotubes. Ind Eng Chem Res 48(2):572–590

    Article  CAS  Google Scholar 

  48. Vazquez E, Prato M (2009) Carbon nanotubes and microwaves: interactions, responses, and applications. ACS Nano 3(12):3819–3824

    Article  CAS  Google Scholar 

  49. Bae C, Yoo H, Kim S, Lee K, Kim J, Sung MM, Shin H (2008) Template-directed synthesis of oxide nanotubes: fabrication, characterization, and applications. Chem Mater 20(3):756–767

    Article  CAS  Google Scholar 

  50. Moynihan S, Iacopino D, Carroll D, Lovera P, Redmond G (2007) Template synthesis of highly oriented polyfluorene nanotube arrays. Chem Mater 20(3):996–1003

    Article  CAS  Google Scholar 

  51. Fang X-L, Deng S-L, Wang J, Wang X-F, Chen C, Li Y, Xie S-Y, Huang R-B, Zheng L-S (2009) From self-assembled microspheres to self-templated nanotubes: morphologies and properties of sulfur-bridged fluoranthene-based organic materials. Chem Mater 21(24):5763–5771

    Article  CAS  Google Scholar 

  52. Claussen JC, Franklin AD, ul Haque A, Porterfield DM, Fisher TS (2009) Electrochemical biosensor of nanocube-augmented carbon nanotube networks. ACS Nano 3((1):37–44

    Article  CAS  Google Scholar 

  53. Meng L, Fu C, Lu Q (2009) Advanced technology for functionalization of carbon nanotubes. Prog Nat Sci 19(7):801–810

    Article  CAS  Google Scholar 

  54. Wang S (2009) Optimum degree of functionalization for carbon nanotubes. Curr Appl Phys 9(5):1146–1150

    Article  Google Scholar 

  55. Gallego M, Petit de Pena Y, Valcarcel M (1994) Fullerenes as sorbent materials for metal preconcentration. Anal Chem 66(22):4074–4078

    Article  CAS  Google Scholar 

  56. Matisová E, Skrabáková S (1995) Carbon sorbents and their utilization for the preconcentration of organic pollutants in environmental samples. J Chromatogr A 707(2):145–179

    Article  Google Scholar 

  57. Matisová E, Skrabáková S (1995) Applicability of a novel carbon sorbent for the preconcentration of volatile chlorinated hydrocarbons. Anal Chim Acta 309(1–3):181–188

    Article  Google Scholar 

  58. Cserháti T (2009) Carbon-based sorbents in chromatography. New Biomed Chromatogr 23(2):111–118

    Article  CAS  Google Scholar 

  59. Skrabáková S, Matisová E, Benická E, Novák I, Berek D (1994) Use of a novel carbon sorbent for the adsorption of organic compounds from water. J Chromatogr A 665(1):27–32

    Article  Google Scholar 

  60. Qin T, Xu X, Polák T, Pacáková V, Stulík K, Jech L (1997) A simple method for the trace determination of methanol, ethanol, acetone and pentane in human breath and in the ambient air by preconcentration on solid sorbents followed by gas chromatography. Talanta 44(9):1683–1690

    Article  CAS  Google Scholar 

  61. Ras MR, Borrull F, Marcé RM (2009) Sampling and preconcentration techniques for determination of volatile organic compounds in air samples. Trends Anal Chem 28(3):347–361

    Article  CAS  Google Scholar 

  62. Chen W, Duan L, Zhu D (2007) Adsorption of polar and nonpolar organic chemicals to carbon nanotubes. Environ Sci Technol 41(24):8295–8300

    Article  CAS  Google Scholar 

  63. Mauter MS, Elimelech M (2008) Environmental applications of carbon-based nanomaterials. Environ Sci Technol 42(16):5843–5859

    Article  CAS  Google Scholar 

  64. Singh MK, Shokuhfar T, Gracio JJDA, Sousa ACMD, Fereira JMDF, Garmestani H, Ahzi S (2008) Hydroxyapatite modified with carbon-nanotube-reinforced poly (methyl methacrylate): a nanocomposite material for biomedical applications. Adv Funct Mater 18(5):694–700

    Article  CAS  Google Scholar 

  65. Peigney A, Laurent C, Flahaut E, Bacsa RR, Rousset A (2001) Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon 39(4):507–514

    Article  CAS  Google Scholar 

  66. Li F, Wang Y, Wang D, Wei F (2004) Characterization of single-wall carbon nanotubes by N2 adsorption. Carbon 42(12–13):2375–2383

    Article  CAS  Google Scholar 

  67. Goering J, Burghaus U (2007) Adsorption kinetics of thiophene on single-walled carbon nanotubes (CNTs). Chem Phys Lett 447(1–3):121–126

    Article  CAS  Google Scholar 

  68. Komarneni M, Sand A, Goering J, Burghaus U (2009) Adsorption kinetics of methanol in carbon nanotubes revisited - solvent effects and pitfalls in ultra-high vacuum surface science experiments. Chem Phys Lett 473(1–3):131–134

    Article  CAS  Google Scholar 

  69. Zhang Z, Zhang J, Chen P, Zhang B, He J, Hu G-H (2006) Enhanced interactions between multi-walled carbon nanotubes and polystyrene induced by melt mixing. Carbon 44(4):692–698

    Article  CAS  Google Scholar 

  70. Wang HZ, Huang ZP, Cai QJ, Kulkarni K, Chen CL, Carnahan D, Ren ZF (2010) Reversible transformation of hydrophobicity and hydrophilicity of aligned carbon nanotube arrays and buckypapers by dry processes. Carbon 48(3):868–875

    Article  CAS  Google Scholar 

  71. Agnihotri S, Rostam-Abadi M, Rood MJ (2004) Temporal changes in nitrogen adsorption properties of single-walled carbon nanotubes. Carbon 42(12–13):2699–2710

    Article  CAS  Google Scholar 

  72. Agnihotri S, Rood MJ, Rostam-Abadi M (2005) Adsorption equilibrium of organic vapors on single-walled carbon nanotubes. Carbon 43(11):2379–2388

    Article  CAS  Google Scholar 

  73. Agnihotri S, Zheng Y, Mota JPB, Ivanov I, Kim P (2007) Practical modeling of heterogeneous bundles of single-walled carbon nanotubes for adsorption applications: estimating the fraction of open-ended nanotubes in samples. J Phys Chem C 111(37):13747–13755

    Article  CAS  Google Scholar 

  74. Agnihotri S, Mota JPB, Rostam-Abadi M, Rood MJ (2006) Theoretical and experimental investigation of morphology and temperature effects on adsorption of organic vapors in single-walled carbon nanotubes. J Phys Chem B 110(15):7640–7647

    Article  CAS  Google Scholar 

  75. Agnihotri S, Mota JPB, Rostam-Abadi M, Rood MJ (2006) Adsorption site analysis of impurity embedded single-walled carbon nanotube bundles. Carbon 44(12):2376–2383

    Article  CAS  Google Scholar 

  76. Zhang B, Dong X, Fu R, Zhao B, Zhang M (2008) The sensibility of the composites fabricated from polystyrene filling multi-walled carbon nanotubes for mixed vapors. Compos Sci Technol 68(6):1357–1362

    Article  CAS  Google Scholar 

  77. Darkrim FL, Malbrunot P, Tartaglia GP (2002) Review of hydrogen storage by adsorption in carbon nanotubes. Int J Hydrogen Energy 27(2):193–202

    Article  CAS  Google Scholar 

  78. Guo GY, Chu KC, Wang D, Duan C (2004) Static polarizability of carbon nanotubes: ab initio independent-particle calculations. Comput Mater Sci 30(3–4):269–273

    Article  CAS  Google Scholar 

  79. Galano A, Francisco-Márquez M (2008) Reactivity of silicon theoretical approach. Chem Phys 345(1):87–94

    Article  CAS  Google Scholar 

  80. Ng TY, Ren YX, Liew KM (2010) Adsorption of hydrogen atoms onto the exterior wall of carbon nanotubes and their thermodynamics properties. Int J Hydrogen Energy 35(10):4543–4553

    Article  CAS  Google Scholar 

  81. Burghaus U (2009) Surface science perspective of carbon dioxide chemistry–Adsorption kinetics and dynamics of CO2 on selected model surfaces. Catal Today 148(3–4):212–220

    Article  CAS  Google Scholar 

  82. Zhang Q, Zuo Y-Z, Han M-H, Wang J-F, Jin Y, Wei F (2010) Long carbon nanotubes intercrossed Cu/Zn/Al/Zr catalyst for CO/CO2 hydrogenation to methanol/dimethyl ether. Catal Today 150(1–2):55–60

    Article  CAS  Google Scholar 

  83. Bekyarova E, Murata K, Yudasaka M, Kasuya D, Iijima S, Tanaka H, Kahoh H, Kaneko K (2003) Single-wall nanostructured carbon for methane storage. J Phys Chem B 107(20):4681–4684

    Article  CAS  Google Scholar 

  84. Jiang J, Sandler SI (2004) Nitrogen and oxygen mixture adsorption on carbon nanotube bundles from molecular simulation. Langmuir 20(25):10910–10918

    Article  CAS  Google Scholar 

  85. Díaz E, Ordóñez S, Vega A (2007) Adsorption of volatile organic compounds onto carbon nanotubes, carbon nanofibers, and high-surface-area graphites. J Colloid Interface Sci 305(1):7–16

    Article  CAS  Google Scholar 

  86. Denis PA (2008) Methane adsorption inside and outside pristine and N-doped single wall carbon nanotubes. Chem Phys 353(1–3):79–86

    Article  CAS  Google Scholar 

  87. Long RQ, Yang RT (2001) Carbon nanotubes as superior sorbent for dioxin removal. J Am Chem Soc 123(9):2058–2059

    Article  CAS  Google Scholar 

  88. Ulbricht H (2009) Interaction kinetics of atoms and molecules on carbon nanotube surfaces. Surf Sci 603(10–12):1853–1862

    Article  CAS  Google Scholar 

  89. Cruz FJAL, Esteves IAAC, Mota JPB (2010) Adsorption of light alkanes and alkenes onto single-walled carbon nanotube bundles: Langmuirian analysis and molecular simulations. Colloids Surf A 357(1–3):43–52

    Article  CAS  Google Scholar 

  90. Vermisoglou EC, Georgakilas V, Kouvelos E, Pilatos G, Viras K, Romanos G, Kanellopoulos NK (2007) Sorption properties of modified single-walled carbon nanotubes. Microporous Mesoporous Mater 99(1–2):98–105

    Article  CAS  Google Scholar 

  91. Su F, Lu C, Hu S (2010) Adsorption of benzene, toluene, ethylbenzene and p-xylene by NaOCl-oxidized carbon nanotubes. Colloids Surf, A 353(1):83–91

    Article  CAS  Google Scholar 

  92. Dewulf J, Van Langenhove H, Huybrechts T (2006) Developments in the analysis of volatile halogenated compounds. Trends Anal Chem 25(4):300–309

    Article  CAS  Google Scholar 

  93. Zheng F, Baldwin DL, Fifield LS, Anheier NC, Aardahl CL, Grate JW (2006) Single-walled carbon nanotube paper as a sorbent for organic vapor preconcentration. Anal Chem 78(7):2442–2446

    Article  CAS  Google Scholar 

  94. Stadermann M, McBrady AD, Dick B, Reid VR, Noy A, Synovec RE, Bakajin O (2006) Ultrafast gas chromatography on single-wall carbon nanotube stationary phases in microfabricated channels. Anal Chem 78(16):5639–5644

    Article  CAS  Google Scholar 

  95. Xu YH, Mitra S (1994) Continuous monitoring of volatile organic compounds in water using on-line membrane extraction and microtrap gas chromatography system. J Chromatogr A 688(1–2):171–180

    Article  CAS  Google Scholar 

  96. Kim M, Mitra S (2003) A microfabricated microconcentrator for sensors and gas chromatography. J Chromatogr A 996(1–2):1–11

    Article  CAS  Google Scholar 

  97. Saridara C, Ragunath S, Pu, Y, Mitra S (2010) Methane preconcentration in a microtrap using multiwalled carbon nanotubes as sorbents. Anal Chim Acta In Press, Corrected Proof. (doi:10.1016/j.aca.2010.01.037)

  98. Hussain CM, Saridara C, Mitra S (2009) Modifying the sorption properties of multi-walled carbon nanotubes via covalent functionalization. Analyst 134(9):1928–1933

    Article  CAS  Google Scholar 

  99. Crespo D, Yang RT (2006) Adsorption of organic vapors on single-walled carbon nanotubes. Ind Eng Chem Res 45(16):5524–5530

    Article  CAS  Google Scholar 

  100. Mitra S, Yun C (1993) Continuous gas chromatographic monitoring of low concentration sample streams using an on-line microtrap. J Chromatogr A 648(2):415–421

    Article  CAS  Google Scholar 

  101. Feng C, Mitra S (1998) Two-stage microtrap as an injection device for continuous on-line gas chromatographic monitoring. J Chromatogr A 805(1–2):169–176

    Article  CAS  Google Scholar 

  102. Thammakhet C, Thavarungkul P, Brukh R, Mitra S, Kanatharana P (2005) Microtrap modulated flame ionization detector for on-line monitoring of methane. J Chromatogr A 1072(2):243–248

    Article  CAS  Google Scholar 

  103. Trojanowicz M (2006) Analytical applications of carbon nanotubes: a review. Trends Anal Chem 25(5):480–489

    Article  CAS  Google Scholar 

  104. Ravelo-Pérez LM, Herrera-Herrera AV, Hernández-Borges J, Rodríguez-Delgado MÁ (2010) Carbon nanotubes: solid-phase extraction. J Chromatogr A 1217(16):2618–2641

    Article  CAS  Google Scholar 

  105. Fontanals N, Marcé RM, Borrull F (2005) New hydrophilic materials for solid-phase extraction. Trends Anal Chem 24(5):394–406

    Article  CAS  Google Scholar 

  106. Fontanals N, Marcé RM, Borrull F (2007) New materials in sorptive extraction techniques for polar compounds. J Chromatogr A 1152(1–2):14–31

    Article  CAS  Google Scholar 

  107. Niu H, Cai Y, Shi Y, Wei F, Liu J, Mou S, Jiang G (2007) Evaluation of carbon nanotubes as a solid-phase extraction adsorbent for the extraction of cephalosporins antibiotics, sulfonamides and phenolic compounds from aqueous solution. Anal Chim Acta 594(1):81–92

    Article  CAS  Google Scholar 

  108. El-Sheikh AH, Sweileh JA, Al-Degs YS, Insisi AA, Al-Rabady N (2008) Critical evaluation and comparison of enrichment efficiency of multi-walled carbon nanotubes, C18 silica and activated carbon towards some pesticides from environmental waters. Talanta 74(5):1675–1680

    Article  CAS  Google Scholar 

  109. Moral A, Sicilia MD, Rubio S, Pérez-Bendito D (2005) Determination of bisphenols in sewage based on supramolecular solid-phase extraction/liquid chromatography/fluorimetry. J Chromatogr A 1100(1):8–14

    Article  CAS  Google Scholar 

  110. Saito Y, Imaizumi M, Ban K, Tahara A, Wada H, Jinno K (2004) Development of miniaturized sample preparation with fibrous extraction media. J Chromatogr A 1025(1):27–32

    Article  CAS  Google Scholar 

  111. Wang A, Fang F, Pawliszyn J (2005) Sampling and determination of volatile organic compounds with needle trap devices. J Chromatogr A 1072(1):127–135

    Article  CAS  Google Scholar 

  112. Eom I-Y, Niri VH, Pawliszyn J (2008) Development of a syringe pump assisted dynamic headspace sampling technique for needle trap device. J Chromatogr A 1196–1197:10–14

    Article  CAS  Google Scholar 

  113. Ciucanu I, Swallow KC, Caprita R (2004) Micro-solid phase extraction with helical-solid-sorbent in the presence of organic solvent for gas chromatography-mass spectrometry analysis of per-O-methylated mono- and disaccharides. Anal Chim Acta 519(1):93–101

    Article  CAS  Google Scholar 

  114. Basheer C, Alnedhary AA, Rao BSM, Valliyaveettil S, Lee HK (2006) Development and application of porous membrane-protected carbon nanotube micro-solid-phase extraction combined with gas chromatography/mass spectrometry. Anal Chem 78(8):2853–2858

    Article  CAS  Google Scholar 

  115. Sae-Khow O, Mitra S (2009) Carbon nanotubes as the sorbent for integrating μ-solid phase extraction within the needle of a syringe. J Chromatogr A 1216(12):2270–2274

    Article  CAS  Google Scholar 

  116. Wang L, Zhao H, Qiu Y, Zhou Z (2006) Determination of four benzodiazepine residues in pork using multiwalled carbon nanotube solid-phase extraction and gas chromatography-mass spectrometry. J Chromatogr A 1136(1):99–105

    Article  CAS  Google Scholar 

  117. Duchamp M, Lee K, Dwir B, Seo JW, Kapon E, Forró LS, Magrez A (2010) Controlled positioning of carbon nanotubes by dielectrophoresis: insights into the solvent and substrate role. ACS Nano 4(1):279–284

    Article  CAS  Google Scholar 

  118. Yu JCC, Lai EPC (2006) Molecularly imprinted polypyrrole modified carbon nanotubes on stainless steel frit for selective micro solid phase pre-concentration of ochratoxin A. React Funct Polym 66(7):702–711

    Article  CAS  Google Scholar 

  119. Augusto F, Carasek E, Silva RGC, Rivellino SR, Batista AD, Martendal E (2010) New sorbents for extraction and microextraction techniques. J Chromatogr A 1217(16):2533–2542

    Article  CAS  Google Scholar 

  120. Yu JCC, Lai EPC (2006) Molecularly imprinted polypyrrole modified carbon nanotubes on stainless steel frit for selective micro solid phase pre-concentration of ochratoxin A. React Funct Polym 66(7):702–711

    Article  CAS  Google Scholar 

  121. Wang J-X, Jiang D-Q, Gu Z-Y, Yan X-P (2006) Multiwalled carbon nanotubes coated fibers for solid-phase microextraction of polybrominated diphenyl ethers in water and milk samples before gas chromatography with electron-capture detection. J Chromatogr A 1137(1):8–14

    Article  CAS  Google Scholar 

  122. Lü J, Liu J, Wei Y, Jiang K, Fan S, Liu J, Jiang G (2007) Preparation of single-walled carbon nanotube fiber coating for solid-phase microextraction of organochlorine pesticides in lake water and wastewater. J Sep Sci 30:2138–2143

    Article  CAS  Google Scholar 

  123. Liu X, Ji Y, Zhang Y, Zhang H, Liu M (2007) Oxidized multiwalled carbon nanotubes as a novel solid-phase microextraction fiber for determination of phenols in aqueous samples. J Chromatogr A 1165(1–2):10–17

    Article  CAS  Google Scholar 

  124. Adomaviciute E, Jonusaite K, Barkauskas J, Vickackaite V (2008) In-groove carbon nanotubes device for SPME of aromatic hydrocarbons. Chromatographia 67(7):599–605

    Article  CAS  Google Scholar 

  125. Jiang R, Zhu F, Luan T, Tong Y, Liu H, Ouyang G, Pawliszyn J (2009) Carbon nanotube-coated solid-phase microextraction metal fiber based on sol-gel technique. J Chromatogr A 1216(22):4641–4647

    Article  CAS  Google Scholar 

  126. Li Q, Wang X, Yuan D (2009) Preparation of solid-phase microextraction fiber coated with single-walled carbon nanotubes by electrophoretic deposition and its application in extracting phenols from aqueous samples. J Chromatogr A 1216(9):1305–1311

    Article  CAS  Google Scholar 

  127. Zeng J, Wei W, Wu L, Liu X, Liu K, Li Y (2006) Fabrication of poly(toluidine blue O)/carbon nanotube composite nanowires and its stable low-potential detection of NADH. J Electroanal Chem 595(2):152–160

    Article  CAS  Google Scholar 

  128. Asadollahzadeh H, Noroozian E, Maghsoudi S (2010) Solid-phase microextraction of phthalate esters from aqueous media by electrochemically deposited carbon nanotube/polypyrrole composite on a stainless steel fiber. Anal Chim Acta 669(1–2):32–38

    Article  CAS  Google Scholar 

  129. Minet I, Hevesi L, Azenha M, Delhalle J, Mekhalif Z (2010) Preparation of a polyacrylonitrile/multi-walled carbon nanotubes composite by surface-initiated atom transfer radical polymerization on a stainless steel wire for solid-phase microextraction. J Chromatogr A 1217(17):2758–2767

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somenath Mitra.

Additional information

Published in the special issue Nanomaterials for Improved Analytical Processes with Guest Editors Miguel Valcárcel and Bartolomé M. Simonet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hussain, C.M., Mitra, S. Micropreconcentration units based on carbon nanotubes (CNT). Anal Bioanal Chem 399, 75–89 (2011). https://doi.org/10.1007/s00216-010-4194-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-4194-6

Keywords

Navigation