Skip to main content
Log in

Graphene-based electrochemical sensor for detection of 2,4,6-trinitrotoluene (TNT) in seawater: the comparison of single-, few-, and multilayer graphene nanoribbons and graphite microparticles

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The detection of explosives in seawater is of great interest. We compared response single-, few-, and multilayer graphene nanoribbons and graphite microparticle-based electrodes toward the electrochemical reduction of 2,4,6-trinitrotoluene (TNT). We optimized parameters such as accumulation time, accumulation potential, and pH. We found that few-layer graphene exhibits about 20% enhanced signal for TNT after accumulation when compared to multilayer graphene nanoribbons. However, graphite microparticle-modified electrode provides higher sensitivity, and there was no significant difference in the performance of single-, few-, and multilayer graphene nanoribbons and graphite microparticles for the electrochemical detection of TNT. We established the limit of detection of TNT in untreated seawater at 1 μg/mL.

Graphene for detection of TNT based explosives

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Royds D, Lewis SW, Taylor AM (2005) Talanta 67:262

    Article  CAS  Google Scholar 

  2. Anderson GP, Moreira SC, Charles PT, Medintz IL, Goldman ER, Zeinali M, Taitt CR (2006) Anal Chem 78(7):2279

    Article  CAS  Google Scholar 

  3. Pinsino A, Della TC, Sammarini V, Bonaventura R, Amato E, Matranga V (2008) Cell Biol Tox 24(6):541

    Article  CAS  Google Scholar 

  4. Basova EY, Goryacheva IY, Mikhirev DA, Rusanova TY, Burmistrova NA, Kerkaert B, Cucu T, De Saeger S, De Meulenaer B (2009) Anal Methods 1(3):170

    Article  CAS  Google Scholar 

  5. Smith RG, D’Souza N, Nicklin S (2008) Analyst 133(5):571

    Article  CAS  Google Scholar 

  6. USEPA (1992) Test methods for evaluating solid waste, proposed update II, Method 8330. EPA Report SW846, 3rd edn. US Environmental Protection Agency, Washington, DC, November 1992

  7. Pumera M (2006) Electrophoresis 27:244

    Article  CAS  Google Scholar 

  8. Pumera M (2008) Electrophoresis 29:269

    Article  CAS  Google Scholar 

  9. Wang J, Pumera M (2006) Talanta 69:984

    Article  CAS  Google Scholar 

  10. Wang J, Pumera M (2002) Anal Chem 74:5919

    Article  CAS  Google Scholar 

  11. Bratin K, Kissinger PT, Briner RC, Bruntlett CS (1981) Anal Chim Acta 130:295

    Article  CAS  Google Scholar 

  12. Wang J (2004) Anal Chim Acta 507:3

    Article  CAS  Google Scholar 

  13. Pumera M (2009) Chem Rec 9:211

    Article  CAS  Google Scholar 

  14. Pumera M (2010) Chem Soc Rev 39:4146

    Article  CAS  Google Scholar 

  15. Shao Y, Wang J, Wu H, Liu J, Aksay IA, Lin Y (2010) Electroanal 22:1027

    CAS  Google Scholar 

  16. Pumera M, Ambrosi A, Bonanni A, Chang ELK, Poh HL (2010) Trends Anal Chem 9:954

    Article  Google Scholar 

  17. Goh MS, Pumera M (2010) Chem Asian J. doi:10.1002/asia.201000437

  18. Goh MS, Pumera M (2010) Electrochem Commun 12:1375

    Article  CAS  Google Scholar 

  19. Geim AK, Novoselov KS (2007) Nat Mater 6:183

    Article  CAS  Google Scholar 

  20. Nanointegris. Graphene technical data sheet. http://www.nanointegris.com/skin/frontend/default/nano/downloads/Graphene%20Technical%20Data%20Sheet.pdf

  21. Ambrosi A, Sasaki T, Pumera M (2010) Chem Asian J 5:266

    Article  CAS  Google Scholar 

  22. Goh MS, Pumera M (2010) Anal Chem 82:8367

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by MINDEF-NTU-JPP/10/07 grant from the Ministry of Defense, Singapore and NAP start-up fund (grant no. M58110066) provided by NTU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Pumera.

Additional information

Published in the special issue Nanomaterials for Improved Analytical Processes with Guest Editors Miguel Valcárcel and Bartolomé M. Simonet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goh, M.S., Pumera, M. Graphene-based electrochemical sensor for detection of 2,4,6-trinitrotoluene (TNT) in seawater: the comparison of single-, few-, and multilayer graphene nanoribbons and graphite microparticles. Anal Bioanal Chem 399, 127–131 (2011). https://doi.org/10.1007/s00216-010-4338-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-4338-8

Keywords

Navigation