Skip to main content
Log in

Transient analysis of the effect of the initial fixed charge density on the kinetic characteristics of the ionic-strength-sensitive hydrogel by a multi-effect-coupling model

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A chemo-electro-mechanical model is presented in this paper for transient simulation of the characteristics of the kinetic ionic-strength-sensitive hydrogel. It is termed the multi-effect-coupling ionic-strength-stimulus (MECis) model and it couples the chemical and electrical as well as mechanical effects together to predict responsive characteristics of the smart hydrogel to the ionic-strength stimulus of an environmental solution based on the laws of conservation of mass and momentum. The kinetic deforming characteristics simulated by the MECis model are compared with the experiments and achieve a good agreement. Then, the influence of the initial fixed charge density, as a material property of the hydrogel, on the kinetics of the ionic-strength-sensitive hydrogel is transiently analyzed, providing a deep view of the kinetics performance of the smart hydrogel.

Comparison of the kinetics swelling of the ionic-strength sensitive hydrogel between the MECis simulation results and experimental data

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Brannon-Peppas L, Peppas NA (1991) Chem Eng Sci 46:715–722

    Article  CAS  Google Scholar 

  2. Mitsuhiro S, Fumiyoshi I, Satoshi I, Shunji N, Charles CH (1996) J Chem Phys 105:4358–4366

    Article  Google Scholar 

  3. Huang J, Hu X, Zhang W, Zhang Y, Li G (2008) Colloid Polym Sci 286:113–118

    Article  CAS  Google Scholar 

  4. Markland P, Zhang Y, Amidon GL, Yang VC (1999) J Biomed Mater Res 47:595–602

    Article  CAS  Google Scholar 

  5. Tanaka T, Nishio I, Sun S-T, Ueno-Nishio S (1982) Science 218:467–469

    Article  CAS  Google Scholar 

  6. Shang J, chen X, Shao Z (2007) Prog Chem 19:1393–1399

    CAS  Google Scholar 

  7. Lee YJ, Pruzinsky SA, Braun PV (2004) Langmuir 20:3096–3106

    Article  CAS  Google Scholar 

  8. Qiu Y, Park K (2001) Adv Drug Del Rev 53:321–339

    Article  CAS  Google Scholar 

  9. Osada Y, Gong J (1993) Prog Polym Sci 18:187–226

    Article  CAS  Google Scholar 

  10. van der Linden HJ, Herber S, Olthuis W, Bergveld P (2003) Analyst 128:325–331

    Article  Google Scholar 

  11. Kim SW, Bae YH, Okano T (1992) Pharm Res 9:283–290

    Article  CAS  Google Scholar 

  12. Huang Y, Yu H, Xiao C (2007) Carbohydr Polym 69:774–783

    Article  CAS  Google Scholar 

  13. Hoare TR, Kohane DS (2008) Polymer 49:1993–2007

    Article  CAS  Google Scholar 

  14. Jen AC, Wake MC, Mikos AG (1996) Biotechnol Bioeng 50:357–364

    Article  CAS  Google Scholar 

  15. Hynd MR, Turner JN, Shain W (2007) J Biomater Sci Polym Ed 18:1223–1244

    Article  CAS  Google Scholar 

  16. Biot MA (1941) J Appl Phys 12:155–164

    Article  Google Scholar 

  17. Ritger PL, Peppas NA (1987) J Control Release 5:23–36

    Article  CAS  Google Scholar 

  18. Mow VC, Kuei SC, Lai WM, Armstrong CG (1980) J Biomech Eng 102:73–84

    Article  CAS  Google Scholar 

  19. Lai WM, Hou JS, Mow VC (1991) J Biomech Eng 113:245–258

    Article  CAS  Google Scholar 

  20. Grimshaw PE, Nussbaum JH, Grodzinsky AJ, Yarmush ML (1990) J Chem Phys 93:4462–4472

    Article  CAS  Google Scholar 

  21. De SK, Aluru NR, Johnson B, Crone WC, Beebe DJ, Moore J (2002) J Microelectromech S 11:544–555

    Article  CAS  Google Scholar 

  22. De SK, Aluru NR (2004) Mech Mater 36:395–410

    Article  Google Scholar 

  23. Wallmersperger T, Kroplin DBB (2007) Macromol Symp 254:306–313

    CAS  Google Scholar 

  24. T. Wallmersperger, B. Kroeplin and R. W. Guelch, Numerical simulation of a coupled chemo-electric-formulation for ionic polymer gels in electric fields, 2002

  25. T. Wallmersperger, D. Ballhause, B. Kroplin, M. Gunther, Z. Shi and G. Gerlach, Coupled chemo-electro-mechanical simulation of polyelectrolyte gels as actuators and sensors, 2008

  26. Hong W, Zhao X, Zhou J, Suo Z (2008) J Mech Phys Solids 56:1779–1793

    Article  CAS  Google Scholar 

  27. Dolbow J, Fried E, Ji H (2004) J Mech Phys Solids 52:51–84

    Article  CAS  Google Scholar 

  28. Dolbow J, Fried E, Ji H (2005) Comput Method Appl M 194:4447–4480

    Article  Google Scholar 

  29. Lin C-C, Metters AT (2006) Adv Drug Del Rev 58:1379–1408

    Article  CAS  Google Scholar 

  30. Saunders JR, Abu-Salih S, Khaleque T, Hanula S, Moussa W (2008) J Comput Theor Nanosci 5:1942–1960

    Article  CAS  Google Scholar 

  31. Wu S, Li H, Paul J, Chen, Lam KY (2004) Macromol Theory Simul 13:13–29

    Article  Google Scholar 

  32. Siepmann J, Siepmann F (2008) Int J Pharm 364:328–343

    Article  CAS  Google Scholar 

  33. Dobrynin AV (2008) Curr Opin Colloid Interface Sci 13:376–388

    Article  CAS  Google Scholar 

  34. Atkins P, Paula JD (2007) Elements of physical chemistry. Oxford University Press, New York

    Google Scholar 

  35. Luo R, Li H, Lam K (2007) Anal Bioanal Chem 389:863–873

    Article  CAS  Google Scholar 

  36. Sinko PJ (2006) Martin's physical pharmacy and pharmaceutical sciences. Lippincott Williams & Wilkins, PA

    Google Scholar 

  37. Lin G, Chang S, Kuo CH, Magda J, Solzbacher F (2009) Sensor Actuat B Chem 136:186–195

    Article  Google Scholar 

  38. Pascual B, Goni I, Gurruchaga M (1999) J Biomed Mater Res 48:447–457

    Article  CAS  Google Scholar 

  39. Li H, Ng TY, Cheng JQ, Lam KY (2003) Comput Mech 33:30–41

    Article  CAS  Google Scholar 

  40. Bajpai SK (2001) J Appl Polym Sci 80:2782–2789

    Article  CAS  Google Scholar 

  41. Ali AE-H, Hegazy E-SA (2007) J Biomed Mater Res B 81:168–174

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, H., Lai, F. Transient analysis of the effect of the initial fixed charge density on the kinetic characteristics of the ionic-strength-sensitive hydrogel by a multi-effect-coupling model. Anal Bioanal Chem 399, 1233–1243 (2011). https://doi.org/10.1007/s00216-010-4385-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-4385-1

Keywords

Navigation