Skip to main content
Log in

Size characterization and quantification of silver nanoparticles by asymmetric flow field-flow fractionation coupled with inductively coupled plasma mass spectrometry

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A method for determining the size of silver nanoparticles and their quantification by asymmetric flow field-flow fractionation coupled with inductively coupled plasma mass spectrometry (ICP-MS) is proposed and was tested in consumer products. Experimental conditions were studied in detail to avoid aggregation processes or alteration of the original size distributions. Additionally, losses from sorption processes onto the channel membrane were minimized for correct quantification of the nanoparticles. Mobile phase composition, injection/focusing, and fractionation conditions were evaluated in terms of their influence on both separation resolution and recovery. The ionic strength, pH, and the presence of ionic and nonionic surfactants had a strong influence on both separation and recovery of the nanoparticles. In general, better results were obtained under those conditions that favored charge repulsions with the membrane. Recovery values of 83 ± 8% and 93 ± 4% with respect to the content of silver nanoparticles were achieved for the consumer products studied. Silver nanoparticle standards were used for size calibration of the channel. The results were compared with those obtained by photon correlation spectroscopy and images taken by transmission electron microscopy. The quantification of silver nanoparticles was performed by direct injection of ionic silver standard solutions into the ICP-MS system, integration of the corresponding peaks, and interpolation of the fractogram area. A limit of detection of 5.6 μg L-1 silver, which corresponds to a number concentration of 1×1012 L-1 for nanoparticles of 10 nm, was achieved for an injection volume of 20 μL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cumberland SA, Lead JR (2009) J Chromatogr A 1216:9099–9105

    Article  CAS  Google Scholar 

  2. Shrivastava S, Bera T, Roy A, Singh G, Ramachandrarao P, Dash D (2007) Nanotechnology 18:225103

    Article  Google Scholar 

  3. Benn T, Westerhoff P (2008) Environ Sci Technol 42:4133–4139

    Article  CAS  Google Scholar 

  4. Andreescu S, Njagi J, Ispas C, Ravalli MT (2009) J Environ Monit 11:27–40

    Article  CAS  Google Scholar 

  5. Domingos RF, Baalousha MA, Ju-Nam Y, Reid MM, Tufenkji N, Lead JR, Leppard GG, Wilkinson KJ (2009) Environ Sci Technol 43:7277–7284

    Article  CAS  Google Scholar 

  6. Contado C, Pagnoni A (2008) Anal Chem 80:7594–7608

    Article  CAS  Google Scholar 

  7. Howard AG (2010) J Environ Monit 12:135–142

    Article  CAS  Google Scholar 

  8. Klaine SJ, Alvarez PJJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Mahendra S, McLaughlin MJ, Lead JR (2008) Environ Toxicol Chem 27:1825–1851

    Article  CAS  Google Scholar 

  9. Alvarez PJJ, Colvin V, Lead J, Stone V (2009) ACS Nano 3:1616–1619

    Article  CAS  Google Scholar 

  10. Tiede K, Hassellöv M, Breitbarth E, Chaudhry Q, Boxall ABA (2009) J Chromatogr A 1216:503–509

    Article  CAS  Google Scholar 

  11. Plathe KL, von der Kammer F, Hassellov M, Moore J, Murayama M, Hofmann T, Hochella MF (2009) Environ Chem 7:82–93

    Article  Google Scholar 

  12. Hassellöv M, Lyven B, Haraldson C, Sirinawin W (1999) Anal Chem 71:3497–3502

    Article  Google Scholar 

  13. Dubascoux S, Le Hecho I, Potin-Gautier M, Lespes G (2008) Talanta 77:60–65

    Article  CAS  Google Scholar 

  14. Roda B, Zattoni A, Reschiglian P, Moon MH, Mirasoli M, Michelini E, Roda A (2009) Anal Chim Acta 635:132–143

    Article  CAS  Google Scholar 

  15. Contado C, Dalpiaz A, Leo E, Zborowski M, Williams PS (2007) J Chromatogr A 1157:321–335

    Article  CAS  Google Scholar 

  16. Benincasa MA, Mazzoni V (2007) J Liq Chromatogr Relat Technol 30:453–462

    Article  CAS  Google Scholar 

  17. Rameshwar T, Samal S, Lee S, Kim S, Cho J, Kim IS (2006) J Nanosci Nanotechnol 6:2461–2467

    Article  CAS  Google Scholar 

  18. Bouby M, Geckeis H, Geyer FW (2008) Anal Bioanal Chem 392:1447–1457

    Article  CAS  Google Scholar 

  19. Sermsri W, Jarujamrus P, Shiowatana J, Siripinyanond A (2010) Anal Bioanal Chem 396:3079–3085

    Article  CAS  Google Scholar 

  20. Poda AR, Bednar AJ, Kennedy AJ, Harmon A, Hull M, Mitrano DM, Ranville JF, Steevens J (2011) J Chromatogr A 1218:4219–4225

    Google Scholar 

  21. Schmidt B, Petersen JH, Koch CB, Plackett D, Johansen NR, Katiyar V, Larsen EH (2009) Food Addit Contam A 26:1619–1627

    Article  CAS  Google Scholar 

  22. Ranville JF, Chittleborough DJ, Shanks F, Morrison RJS, Harris T, Doss F, Beckett RD (1999) Anal Chim Acta 381:315–329

    Article  CAS  Google Scholar 

  23. Stolpe B, Hassellov M, Andersson K, Turner DR (2005) Anal Chim Acta 535:109–121

    Article  CAS  Google Scholar 

  24. Thang NM, Geckeis H, Kim JI, Beck HP (2001) Colloids Surf A 181:289–301

    Article  Google Scholar 

  25. Kvitek L, Panacek A, Soukupova J, Kolar M, Vecerova R, Prucek R, Holecova M, Zboril R (2008) J Phys Chem C 112:5825–5834

    Article  CAS  Google Scholar 

  26. Christian P, Von der Kammer F, Baalousha M, Hofmann T (2008) Ecotoxicology 17:326–343

    Article  CAS  Google Scholar 

  27. Susanto H, Ulbricht M (2009) Membr Sci 327:125–135

    Article  CAS  Google Scholar 

  28. Ise N, Sogami IS (2005) Structure formation in solution: ionic polymers and colloidal particles. Springer, Berlin

    Google Scholar 

  29. Dubascoux S, Le Hecho I, Hassellöv M, Von Der Kammer F, Potin Gautier M, Lespes G (2010) J Anal At Spectrom 25:613–623

    Article  CAS  Google Scholar 

  30. Gimbert LJ, Andrew KN, Haygarth PM, Worsfold PJ (2003) Trends Anal Chem 22:615–633

    Article  CAS  Google Scholar 

  31. Wahlund KG, Giddings JC (1987) Anal Chem 59:1332–1339

    Article  CAS  Google Scholar 

  32. Litzen A, Wahlund KG (1991) Anal Chem 63:1001–1007

    Article  CAS  Google Scholar 

  33. Qureshi RN, Kok WTh (2010) LG/GC Eur 23:18–24

    CAS  Google Scholar 

  34. Laborda F, Jiménez-Lamana J, Bolea E, Castillo JR (2011) J Anal At Spectrom 26:1372–1379

    Google Scholar 

Download references

Acknowledgements

This work was sponsored by the Spanish Ministry of Science and Innovation (project CTQ2009-14237-C02-01). The authors also thank Laboratorios Argenol S.L. for providing the Collargol samples, Gemma Cepria for the differential pulse anodic stripping voltammetry measurements, and Yolanda Rodas from the Institute of Nanoscience of Aragon for the PCS and zeta potential measurements. ICP-MS measurements were performed in the facilities of the Analytical Central Laboratory of the University of Zaragoza.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Bolea.

Additional information

Published in the special issue Plasma Spectrochemistry with Guest Editors Juan Castillo and Martín Resano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bolea, E., Jiménez-Lamana, J., Laborda, F. et al. Size characterization and quantification of silver nanoparticles by asymmetric flow field-flow fractionation coupled with inductively coupled plasma mass spectrometry. Anal Bioanal Chem 401, 2723–2732 (2011). https://doi.org/10.1007/s00216-011-5201-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-5201-2

Keywords

Navigation