Skip to main content
Log in

Layer-by-layer construction of protein architectures through avidin–biotin and lectin–sugar interactions for biosensor applications

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this review, the preparation and properties of protein architectures constructed by layer-by-layer (LbL) deposition through avidin–biotin and concanavalin A (Con A)–sugar interactions are discussed in relation to their use for optical and electrochemical biosensors. LbL films can be constructed through the alternate deposition of avidin and biotin-labeled enzymes on the surfaces of optical probes and electrodes. The enzymes retain their catalytic activity, resulting in the formation of optical and electrochemical biosensors. Alternatively, Con A can be used to construct enzyme-containing LbL films and microcapsules using sugar-labeled enzymes. Some enzymes such as glucose oxidase and horseradish peroxidase can be used for this purpose without labeling with sugar, because these enzymes contain intrinsic hydrocarbon chains on their molecular surfaces. The Con A/enzyme LbL architectures were successfully used to develop biosensors sensitive to specific substrates of the enzyme. In addition, Con A-based films can be used for the optical and electrochemical detection of sugars.

Sugar-induced decomposition of Con A/glycogen LbL film for the electrochemical sugar sensing

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Decher G, Hong JD (1991) Buildup of ultrathin multilayer films by a self-assembly process. I. Consecutive adsorption of anionic and cationic bipolar amphiphiles on charged surfaces. Makromol Chem Macromol Symp 46:321–327

    Google Scholar 

  2. Decher G, Hong JD (1991) Buildup of ultrathin multilayer films by a self-assembly process. II. Consecutive adsorption of anionic and cationic bipolar amphiphiles and polyelectrolytes on charged surfaces. Ber Bunsenges Phys Chem 95:1430–1434

    Google Scholar 

  3. Decher G (1997) Fussy nanoassemblies: toward layered polymeric multicomposites. Science 277:1232–1237

    Article  CAS  Google Scholar 

  4. Major JS, Blanchard GJ (2001) Covalent bound polymer multilayers for efficient metal ion sorption. Langmuir 17:1163–1168

    Article  CAS  Google Scholar 

  5. Stockton WB, Rubner MF (1997) Molecular-level processing of conjugated polymers. 4. Layer-by-layer manipulation of polyaniline via hydrogen-bonding interactions. Macromolecules 30:2717–2725

    Article  CAS  Google Scholar 

  6. Sukhishvili SA, Granick S (2002) Layered, erasable polymer multilayers formed by hydrogen-bonded sequential self-assembly. Macromolecules 35:301–310

    Article  CAS  Google Scholar 

  7. Kozlovskaya V, Kharlampieva E, Drachuk I, Cheng D, Tsukruk VV (2010) Responsive microcapsule reactors based on hydrogen-bonded tannic acid layer-by-layer assemblies. Soft Matter 6:3596–3608

    Article  CAS  Google Scholar 

  8. Bourdillon C, Demaille C, Moiroux J, Saveant JM (1995) Catalytic and mass transport in spatially ordered enzyme assemblies on electrode. J Am Chem Soc 117:11499–11506

    Article  CAS  Google Scholar 

  9. Rao SV, Anderson KW, Bachas LG (1999) Controlled layer-by-layer immobilization of horseradish peroxide. Biotechnol Bioeng 65:389–396

    Article  CAS  Google Scholar 

  10. Sato K, Imoto Y, Sugama J, Seki S, Inoue H, Odagiri T, Hoshi T, Anzai J (2005) Sugar-induced disintegration of layer-by-layer assemblies composed of concanavalin A and glycogen. Langmuir 21:797–799

    Article  CAS  Google Scholar 

  11. Shiratori SS, Rubner MF (2000) pH-dependent thickness behavior of sequentially adsorbed layers of weak polyelectrolytes. Macromolecules 33:4213–4219

    Article  CAS  Google Scholar 

  12. Miller MD, Bruening ML (2005) Correlation of the swelling and permeability of polyelectrolyte multilayer films. Chem Mater 17:5375–5381

    Article  CAS  Google Scholar 

  13. Ariga K, Lvov Y, Kunitake T (1997) Assembling alternate dye-polyion molecular films by electrostatic layer-by-layer adsorption. J Am Chem Soc 119:2224–2231

    Article  CAS  Google Scholar 

  14. Lvov Y, Ariga K, Ichinose I, Kunitake T (1995) Assembly of multicomponent protein films by means of electrostatic layer-by-layer adsorption. J Am Chem Soc 117:6117–6123

    Article  CAS  Google Scholar 

  15. Zhang J, Senger B, Vautier D, Picart C, Schaaf P, Voegel JC, Lavalle P (2005) Natural polyelectrolyte films based on layer-by-layer deposition of collagen and hyaluronic acid. Biomaterials 26:3353–3361

    Article  CAS  Google Scholar 

  16. Yoshida K, Sato K, Anzai J (2010) Layer-by-layer polyelectrolyte films containing insulin for pH-triggered release. J Mater Chem 20:1546–1552

    Article  CAS  Google Scholar 

  17. Etienne O, Schneider A, Taddei C, Richert L, Schaaf P, Voegel JC, Egles C, Picart C (2005) Degradability of polysaccharides multilayer films in the oral environment: an in vitro and in vivo study. Biomacromolecules 6:726–733

    Article  CAS  Google Scholar 

  18. Noguchi T, Anzai J (2006) Redox properties of the ferricyanide ion on electrodes coated with layer-by-layer thin films composed of polysaccharide and poly(allylamine). Langmuir 22:2870–2875

    Article  CAS  Google Scholar 

  19. Wang B, Anzai J (2007) Redox reactions of ferricyanide ions in layer-by-layer deposited polysaccharide films: a significant effect of the type of polycation in the films. Langmuir 23:7378–7384

    Google Scholar 

  20. Sato H, Anzai J (2006) Preparation of layer-by-layer thin films composed of DNA and ferrocene-bearing poly(amine)s and their redox properties. Biomacromolecules 7:2072–2076

    Article  CAS  Google Scholar 

  21. Sun B, Lynn DM (2010) Release of DNA from polyelectrolyte multilayers fabricated using “charge-shifting” cationic polymers: tunable temporal control and sequential, multi-agent release. J Contr Release 148:91–100

    Article  CAS  Google Scholar 

  22. Tomita S, Sato K, Anzai J (2008) Layer-by-layer assembled thin films composed of carboxyl-terminated poly(amidoamine) dendrimer as a pH-sensitive nano-device. J Colloid Interface Sci 326:35–40

    Article  CAS  Google Scholar 

  23. Son KJ, Kim S, Kim JH, Jang WD, Lee Y, Koh WG (2010) Dendrimerporphyrin-terminated polyelectrolyte multilayer micropatterns for a protein microarray with enhanced sensitivity. J Mater Chem 20:6531–6538

    Google Scholar 

  24. Kim J, Lee SW, Hammond PT, Shao-Horn Y (2009) Electrostatic layer-by-layer assembled Au nanoparticle/MWNT thin films: microstructure, optical property, and electrocatalytic activity for methanol oxidation. Chem Mater 21:2993–3001

    Article  CAS  Google Scholar 

  25. Lee SW, Kim J, Chen S, Hammond PT, Shao-Horn Y (2010) Carbon nanotube/manganese oxide ultrathin film electrodes for electrochemical capacitors. ACS Nano 4:3889–3896

    Article  CAS  Google Scholar 

  26. Li J, Srivastava S, Ok JG, Zhang Y, Bedewy M, Kotov NV, Hart AJ (2011) Multidirectional hierarchical nanocomposites made by carbon nanotube growth within layer-by-layer-assembled films. Chem Mater 23:1023–1031

    Article  CAS  Google Scholar 

  27. Hoshi T, Saiki H, Kuwazawa S, Tsuchiya C, Chen Q, Anzai J (2001) Selective permeation of hydrogen peroxide through polyelectrolyte multilayer films and its use for amperometric sensors. Anal Chem 73:5310–5315

    Google Scholar 

  28. Li WJ, Wang Z, Sun CQ, Xian M, Zhao M (2000) Fabrication of multilayer films containing horseradish peroxide and polycation-bearing Os complexes by means of electrostatic layer-by-layer adsorption and its application as a hydrogen peroxide sensor. Anal Chim Acta 418:225–232

    Article  CAS  Google Scholar 

  29. Coche-Guerente L, Labbe P, Mengeaud V (2001) Amplification of amperometric biosensor responses by electrochemical substrate recycling. 3. Theoretical and experimental study of the phenol-polyphenol oxidase system immobilized in laponite hydrogel and layer-by-layer self-assembled structures. Anal Chem 73:3206–3218

    Article  CAS  Google Scholar 

  30. Kobayashi Y, Anzai J (2001) Preparation and optimization of bienzyme multilayer films using lectin and glycol-enzymes for biosensor applications. J Electroanal Chem 507:250–255

    Article  CAS  Google Scholar 

  31. Zhao W, Xu JJ, Chen HY (2006) Electrochemical biosensors based on layer-by-layer assemblies. Electroanalysis 18:1737–1748

    Article  CAS  Google Scholar 

  32. Donath E, Sukhorukov GB, Caruso F, Davies SF, Mohwald H (1998) Novel hollow polymer shells by colloid-templated assembly of polyelectrolytes. Angew Chem Int Ed 37:2202–2205

    Article  CAS  Google Scholar 

  33. Petkov AI, Volodkin DV, Sukhorukov GB (2005) Protein-calcium carbonate coprecipitation: a tool for protein encapsulation. Biotechnol Progr 21:918–925

    Google Scholar 

  34. Sukhishvili SA (2005) Responsive polymer films and capsules via layer-by-layer assembly. Curr Opin Colloid Interface Sci 10:37–44

    Article  CAS  Google Scholar 

  35. Tang Z, Wang T, Podsiadlo P, Kotov NA (2006) Biomedical applications of layer-by-layer assembly: from biomimetics to tissue engineering. Adv Mater 18:3203–3224

    Article  CAS  Google Scholar 

  36. Lutkenhaus JL, Hammond PT (2007) Electrochemically enabled polyelectrolyte multilayer devices: from fuel cells to sensors. Soft Matter 3:804–816

    Article  CAS  Google Scholar 

  37. Ariga K, Hill JP, Ji Q (2008) Biomaterials and biofunctionality in layered macromolecular assemblies. Macromol Biosci 8:981–990

    Article  CAS  Google Scholar 

  38. He Q, Cui Y, Li J (2009) Molecular assembly and application of biomimetic microcapsules. Chem Soc Rev 38:2292–2303

    Article  CAS  Google Scholar 

  39. Sato K, Yoshida K, Takahahsi S, Anzai J (2011) pH- and sugar-sensitive layer-by-layer films and microcapsules for drug delivery. Adv Drug Deliv Rev 63:809–821 (doi:10.1016/j.addr.2011.03.015)

  40. Wilchek M, Bayer EA (1990) Applications of avidin–biotin technology. Methods Enzymol 184:14–45

    Google Scholar 

  41. Elia G (2008) Biotinylation reagents for the study of cell surface proteins. Proteomics 8:4012–4024

    Article  CAS  Google Scholar 

  42. Pugliese L, Coda A, Malcovati M, Bolognesi M (1993) Three-dimensional structure of the tetragonal crystal form of egg-white avidin in its functional complex with biotin at 2.7 Å resolution. J Mol Biol 231:698–710

    Article  CAS  Google Scholar 

  43. Green NM, Konieczny L, Toms EJ, Valentine RC (1971) The use of bifunctional biotinyl compounds to determine the arrangement of subunits in avidin. Biochem J 125:781–791

    CAS  Google Scholar 

  44. Snejdarkova M, Rehak M, Otto M (1993) Design of a glucose minisensor based on streptavidin-glucose oxidase complex coupling with self-assembled biotinylated phospholipids membrane on solid support. Anal Chem 65:665–668

    Article  CAS  Google Scholar 

  45. Barbarakis MS, Qaisi WG, Daunert S, Bachas LG (1993) Observation of “hook effects” in the inhibition and dose-response curves of biotin assay based on the interaction of biotinylated glucose oxidase with (strept)avidin. Anal Chem 65:457–460

    Article  CAS  Google Scholar 

  46. He PG, Takahashi T, Anzai J, Suzuki Y, Osa T (1994) A facile method to regulate enzyme load on biosensor electrode based on avidin/biotin complexation. Pharmazie 49:621–623

    CAS  Google Scholar 

  47. He PG, Takahashi T, Hoshi T, Anzai J, Suzuki Y, Osa T (1994) Preparation of enzyme multilayers on electrode surface by use of avidin and biotin-labeled enzyme for biosensor applications. Mater Sci Eng C 2:103–106

    Article  Google Scholar 

  48. Hoshi T, Anzai J, Osa T (1995) Controlled deposition of glucose oxidase on platinum electrode based on an avidin/biotin system for the regulation of output current of glucose sensors. Anal Chem 67:770–775

    Article  CAS  Google Scholar 

  49. Anzai J, Takeshita H, Hoshi T, Osa T (1995) Regulation of output current of L-lactate sensors based on alternate deposition of avidin and biotinylated lactate oxidase on electrode surface through avidin/biotin complexation. Chem Pharm Bull 43:520–522

    Google Scholar 

  50. Du X, Anzai J, Osa T, Motohashi R (1996) Amperometric alcohol sensors based on protein multilayers composed of avidin and biotin-labeled alcohol oxidase. Electroanalysis 8:813–816

    Article  CAS  Google Scholar 

  51. Anzai J, Kobayashi Y, Suzuki Y, Takeshita H, Chen Q, Osa T, Hoshi T, Du X (1998) Enzyme sensors prepared by layer-by-layer deposition of enzymes on a platinum electrode through avidin–biotin interaction. Sens Actuators B 52:3–9

    Google Scholar 

  52. Lacey ALD, Detcheverry M, Moiroux J, Bourdillon C (2000) Construction of multicomponent catalytic films based on avidin–biotin technology for the electroenzymatic oxidation of molecular hydrogen. Biotechnol Bioeng 68:1–10

    Google Scholar 

  53. Yao T, Nanjo Y (2001) Molecular design of an enzyme reactor involving amplification for L-glutamate using biotin–avidin bioaffinity binding. Bunseki Kagaku 50:613–618

    Google Scholar 

  54. Anicet N, Bourdillon C, Moiroux J, Saveant JM (1998) Electron transfer in organized assemblies of biomolecules. Step-by-step avidin/biotin construction and dynamic characteristics of a spatially ordered multilayer enzyme electrode. J Phys Chem B 102:9844–9849

    Article  CAS  Google Scholar 

  55. Rickert J, Brecht A, Gopel W (1997) Quartz crystal microbalances for quantitative biosensing and characterizing protein multilayers. Biosens Bioelectron 12:567–575

    Article  CAS  Google Scholar 

  56. Spaeth K, Brecht A, Gauglitz G (1997) Studies on the biotin–avidin multilayer adsorption by spectroscopic ellipsometry. J Colloid Interface Sci 196:128–135

    Google Scholar 

  57. Anzai J, Takeshita H, Kobayashi Y, Osa T, Hoshi T (1998) Layer-by-layer construction of enzyme multilayers on an electrode for the preparation of glucose and lactate sensors: elimination of ascorbate interference by means of an ascorbate oxidase multilayer. Anal Chem 70:811–817

    Article  CAS  Google Scholar 

  58. Chen Q, Kobayashi Y, Takeshita H, Hoshi T, Anzai J (1998) Avidin-biotin system-based enzyme multilayer membranes for biosensor applications: optimization of loading of choline esterase and choline oxidase in the bienzyme membrane for acetylcholine biosensors. Electroanalysis 10:94–97

    Article  CAS  Google Scholar 

  59. Anicet N, Bourdillon C, Moiroux J, Saveant JM (1999) Step-by-step avidin-biotin construction of bienzyme electrodes. Kinetic analysis of the coupling between the catalytic activities of immobilized monomolecular layers of glucose oxidase and hexokinase. Langmuir 15:6527–6533

    Article  CAS  Google Scholar 

  60. Hoshi T, Saiki H, Takeuchi K, Anzai J (1999) Enzyme coupled lactose sensors based on bienzyme membrane prepared by an avidin/biotin method. Trans IEE Jpn 119E:576–580

    Article  Google Scholar 

  61. Yao T, Nanjo Y (2001) Multilayer immobilized reactors of enzymes of the same and different types using biotin–avidin bioaffinity binding. Bunseki Kagaku 50:603–611

    Google Scholar 

  62. Mousty C, Bergamasco JL, Wessel R, Perrot H, Cosnier S (2001) Elaboration and characterization of spatially controlled assemblies of complementary polyphenol oxidase-alkaline phosphatase activities on electrodes. Anal Chem 73:2890–2897

    Article  CAS  Google Scholar 

  63. Kim DC, Jang AR, Kang DJ (2009) Biological functionality of active enzyme structures immobilized on various solid surfaces. Curr Appl Phys 9:1454–1458

    Article  Google Scholar 

  64. Steger B, Padeste C, Grubelnik A, Tiefenauer L (2003) Charge transport effects in ferrocene-streptavidin multilayers immobilized on electrode surfaces. Electrochim Acta 48:761–769

    Article  Google Scholar 

  65. Padeste C, Steiger B, Grubelnik A, Tiefenauer L (2004) Molecular assembly of redox-conductive ferrocene-streptavidin conjugates—towards bio-electrochemical devices. Biosens Bioelectron 20:545–552

    Google Scholar 

  66. Padeste C, Steiger B, Grubelnik A, Tiefenauer L (2003) Redox labeled avidin for enzyme sensor architectures. Biosens Bioelectron 19:239–247

    Article  CAS  Google Scholar 

  67. Liu J, Tian S, Tiefenauer L, Nielsen PE, Knoll W (2005) Simultaneous amplified electrochemical and surface plasmon optical detection of DNA hybridization based on ferrocene–streptavidin conjugates. Anal Chem 77:2756–2761

    Google Scholar 

  68. Mir M, Alvarez M, Azzaroni O, Tiefenauer L, Knoll W (2008) Molecular architectures for electrocatalytic amplification of oligonucleotide hybridization. Anal Chem 80:6554–6559

    Article  CAS  Google Scholar 

  69. Azzaroni O, Mir M, Alvarez M, Tiefenauer L, Knoll W (2008) Electrochemical rectification by redox-labeled bioconjugates: molecular building blocks for the construction of biodiodes. Langmuir 24:2878–2883

    Google Scholar 

  70. Rauf S, Zhou D, Abell C, Klenerman D, Kang DJ (2006) Building three-dimensional nanostructures with active enzymes by surface templated layer-by-layer assembly. Chem Commun 1721–1723

  71. Kim DC, Sohn JI, Zhou D, Duke TAJ, Kang DL (2010) Controlled assembly for well-defined 3D bioarchitecture using two active enzymes. ACS Nano 4:1580–1586

    Article  CAS  Google Scholar 

  72. Naujoks N, Stemmer A (2006) Charge patterns as tenplates for the assembly of layered biomolecular structures. J Nanosci Nanotechnol 6:2445–2450

    Article  CAS  Google Scholar 

  73. Hoshi T, Saiki H, Anzai J (2000) Preparation of spatially ordered multilayer films of antibody and their binding properties. Biosens Bioelectron 15:623–628

    Article  CAS  Google Scholar 

  74. Cui X, Pei R, Wang Z, Yang F, Ma Y, Dong S, Yang X (2003) Layer-by-layer assembly of multilayer films composed of avidin and biotin-labeled antibody for immunosensing. Biosens Bioelectron 18:59–67

    Article  CAS  Google Scholar 

  75. Ngundi MM, Anderson GP (2007) Failure of layer-by-layer multilayers composed of neutravidin-biotin-labeled antibody for sandwich fluoroimmunosensing. Biosens Bioelectron 22:3243–3246

    Article  CAS  Google Scholar 

  76. Jacobs CB, Peairs MJ, Venton BJ (2010) Review: carbon nanotube based electrochemical sensors for biomolecules. Anal Chim Acta 662:105–127

    Article  CAS  Google Scholar 

  77. Holzinger M, Haddad R, Maaref A, Cosnier S (2009) Amperometric biosensors based on biotinylated single-walled carbon nanotubes. J Nanosci Nanotechnol 9:6042–6046

    Article  CAS  Google Scholar 

  78. Haddad R, Holzinger M, Maaref A, Cosnier S (2010) Pyrene functionalized single-walled carbon nanotubes as precursors for high performance biosensors. Electrochim Acta 55:7800–7803

    Article  CAS  Google Scholar 

  79. Satishkumar BC, Brown LO, Gao Y, Wang CC, Wang HL, Doorn SK (2007) Reversible fluorescence quenching in carbon nanotubes for biomolecular sensing. Nat Nanotechnol 2:560–564

    Article  CAS  Google Scholar 

  80. Luszczyn J, Plonska-Brzezinska ME, Palkar A, Dubis AT, Simionescu A, Simionescu DT, Kalska-Szostko B, Winler K, Echegoyen L (2010) Small noncytotoxic carbon nano-onions: first covalent functionalization with biomolecules. Chem Euro J 16:4870–4880

    CAS  Google Scholar 

  81. Pividori MI, Lermo A, Zacco E, Hernandez S, Fabiano S, Alegret S (2007) Bioaffiity platform based on carbon-polymer biocomposites for electrochemical biosensing. Thin Solid Films 516:284–292

    Article  CAS  Google Scholar 

  82. Pieczonka NPW, Goulet PJG, Aroca RF (2006) Chemically selective sensing through layer-by-layer incorporation of biorecognition into thin film substrates for surface-enhanced Raman scattering. J Am Chem Soc 128:12626–12627

    Article  CAS  Google Scholar 

  83. Dougherty SA, Zhang D, Liang J (2009) Fabrication of protein nanotubes using template-assisted electrostatic layer-by-layer methods. Langmuir 25:13232–13237

    Article  CAS  Google Scholar 

  84. Dai Z, Wilson JT, Chaikof EL (2007) Construction of pegylated multilayer architectures via (strept)avidin/biotin interactions. Mater Sci Eng C 27:402–408

    Article  CAS  Google Scholar 

  85. Endo Y, Sato K, Anzai J (2011) Preparation of avidin-containing polyelectrolyte microcapsules and their uptake and release properties. Polym Bull 66:711–720

    Article  CAS  Google Scholar 

  86. Inoue H, Sato K, Anzai J (2005) Disintegration of layer-by-layer assemblies composed of 2-iminobiotin-labeled poly(ethyleneimine) and avidin. Biomacromolecules 6:27–29

    Article  CAS  Google Scholar 

  87. Sato K, Kodama D, Naka Y, Anzai J (2006) Electrochemically induced disintegration of layer-by-layer-assembled thin films composed of 2-iminobiotin-labeled poly(ethyleneimine) and avidin. Biomacromolecules 7:3302–3305

    Article  CAS  Google Scholar 

  88. Sato K, Naka Y, Anzai J (2007) Effects of hydrogen peroxide on the electrochemical decomposition of layer-by-layer thin films composed of 2-iminobiotin-labeled poly(ethyleneimine) and avidin. J Colloid Interface Sci 315:396–399

    Article  CAS  Google Scholar 

  89. Becker JW, Reeke GN Jr, Cunninngham BA, Edelman GM (1976) New evidence on the location of the saccharide-binding site of concanavalin A. Nature 259:406–409

    Article  CAS  Google Scholar 

  90. Mandel DK, Kishore N, Brewer CF (1994) Thermodynamics of lectin–carbohydrate interactions. Titration microcalorimetry measurements of the binding of N-linked carbohydrates and ovalbumin to concanavalin A. Biochemistry 33:1149–1156

    Google Scholar 

  91. Zhang SZ, Zhao FL, Li KA, Tong SY (2001) A study on the interaction between concanavalin A and glycogen by light scattering technique and its analytical application. Talanta 54:333–342

    Article  CAS  Google Scholar 

  92. Lvov Y, Ariga K, Ichinose I, Kunitake T (1995) Layer-by-layer architectures of concanavalin A by means of electrostatic and biospecific interactions. J Chem Soc Chem Commun 2313–2314

  93. Lvov Y, Ariga K, Ichinose I, Kunitake T (1996) Molecular film assembly via layer-by-layer adsorption of oppositely charged macromolecules (linear polymer, protein and clay) and concanavalin A and glycogen. Thin Solid Films 284–285:797–801

    Article  Google Scholar 

  94. Farooqi M, Saleemuddin M, Ulber R, Sosnitza P, Scheper T (1997) Bioaffinity layering: a novel strategy for the immobilization of large quantities of glycoenzymes. J Biotechnol 55:171–179

    Article  CAS  Google Scholar 

  95. Anzai J, Kobayashi Y, Nakamura N (1998) Alternate deposition of concanavalin A and mannose-labelled enzymes on a solid surface to prepare catalytically active enzyme thin films. J Chem Soc-Perkin Trans 2:461–462

    Article  Google Scholar 

  96. Anzai J, Kobayashi Y (2000) Construction of multilayer thin films of enzymes by means of sugar–lectin interactions. Langmuir 16:2851–2856

    Google Scholar 

  97. Tang L, Zeng GM, Yang YH, Shen GL, Huang GH, Niu CG, Sun W, Li JB (2005) Detection of phenylhydrazine based on lectin-glycoenzyme multilayer-film modified biosensor. Int J Environ Anal Chem 85:111–125

    Article  CAS  Google Scholar 

  98. Yang S, Chen Z, Jin X, Lin X (2006) HRP biosensor based on sugar-lectin biospecific interactions for the determination of phenolic compounds. Electrochim Acta 52:200–205

    Article  CAS  Google Scholar 

  99. Liu L, Jin X, Yang S, Chen Z, Lin X (2007) A highly sensitive biosensor with (Con A/HRP)n multilayer films based on layer-by-layer technique for the detection of reduced thiols. Biosens Bioelectron 22:3210–3216

    Article  CAS  Google Scholar 

  100. Liu L, Chen Z, Yang S, Jin X, Lin X (2008) A novel inhibition biosensor constructed by layer-by-layer technique based on biospecific affinity for the determination of sulfide. Sens Actuators B 129:218–224

    Article  Google Scholar 

  101. Chen Z, Xi F, Yang S, Wu Q, Lin X (2008) Development of a bienzyme system based on sugar-lectin biospecific interactions for amperometric determination of phenols and aromatic amines. Sens Actuators B 130:900–907

    Article  Google Scholar 

  102. Chen H, Xi F, Gao X, Chen Z, Lin X (2010) Bienzyme bionanomultilayer electrode for glucose biosensing based on functional carbon nanotubes and sugar-lectin biospecific interaction. Anal Biochem 403:36–42

    Article  CAS  Google Scholar 

  103. Yao H, Guo X, Hu N (2009) Loading of myoglobin into layer-by-layer films assembled by concanavalin A and dextran based on their biospecific recognition: an electrochemical study. Electrochim Acta 54:7330–7337

    Article  CAS  Google Scholar 

  104. Yao H, Hu N (2009) pH-sensitive “on-off” switching behavior of layer-by-layer films assembled by concanavalin A and dextran toward electroactive probes and its application in bioelectrocatalysis. J Phys Chem B 113:16021–16027

    Article  CAS  Google Scholar 

  105. Yao H, Hu N (2010) pH-switchable bioelectrocatalysis of hydrogen peroxide on layer-by-layer films assembled by concanavalin A and horseradish peroxide with electroactive mediator in solution. J Phys Chem B 114:3380–3386

    Article  CAS  Google Scholar 

  106. Yao H, Hu N (2010) pH-controllable on-off bioelectrocatalysis of bienzyme layer-by-layer films assembled by concanavalin A and glycoenzymes with an electroactive mediator. J Phys Chem B 114:9926–9933

    Article  CAS  Google Scholar 

  107. Chinnayelka S, McShane MJ (2004) Glucose-sensitive nanoassemblies comprising affinity-binding complexes trapped in fuzzy microshells. J Fluorescence 14:585–595

    Google Scholar 

  108. Sato K, Kodama D, Anzai J (2006) Electrochemical determination of sugars by use of multilayer thin films of ferrocene-appended glycogen and concanavalin A. Anal Bioanal Chem 386:1899–1904

    Article  CAS  Google Scholar 

  109. Sato K, Anzai J (2006) Fluorometric determination of sugars using fluorescein-labeled concanavalin A–glycogen conjugates. Anal Bioanal Chem 384:1297–1301

    Google Scholar 

  110. Sato K, Endo Y, Anzai J (2007) Polyelectrolyte multilayer microcapsules containing fluorescein isothiocyanate–concanavalin A/glycogen conjugates for fluorometric determination of sugars. Sens Mater 19:203–213

    Google Scholar 

  111. Sato K, Kodama D, Endo Y, Anzai J (2009) Preparation of insulin-containing microcapsules by a layer-by-layer deposition of concanavalin A and glycogen. J Nanosci Nanotechnol 9:386–390

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-ichi Anzai.

Additional information

Published in the special issue Surface Architectures for Analytical Purposes with guest editors Luigia Sabbatini and Luisa Torsi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takahashi, S., Sato, K. & Anzai, Ji. Layer-by-layer construction of protein architectures through avidin–biotin and lectin–sugar interactions for biosensor applications. Anal Bioanal Chem 402, 1749–1758 (2012). https://doi.org/10.1007/s00216-011-5317-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-5317-4

Keywords

Navigation