Skip to main content
Log in

Could smaller really be better? Current and future trends in high-resolution microcoil NMR spectroscopy

  • Trends
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

NMR is an invaluable analytical technique that provides structural and chemical information about a molecule without destroying the sample. However, NMR suffers from an inherent lack of sensitivity compared to other popular analytical techniques. This trends article focuses on strategies to increase the sensitivity of NMR using solenoidal microcoil, microstrip, and microslot probes. The role of these reduced-volume receiver coils for detection in hyphenated capillary electrophoresis (CE) and capillary isotachophoresis (cITP) NMR experiments is discussed. Future directions will likely build on work to develop probes containing multiple coils for high-throughput NMR and field-portable instruments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fratila RM, Velders AH (2011) Small-volume nuclear magnetic resonance spectroscopy. Annu Rev Anal Chem 4:227–249

    Article  CAS  Google Scholar 

  2. Webb AG (1997) Radiofrequency microcoils in magnetic resonance. Prog Nucl Magn Reson Spectrosc 31(1):1–42

    Article  CAS  Google Scholar 

  3. Claridge TDW (2009) High-resolution NMR techniques in organic chemistry, 2nd edn. Elsevier, Oxford

  4. Ardenkjær-Larsen JH, Fridlund B, Gram A, Hansson G, Hansson L, Lerche MH, Servin R, Thaning M, Golman K (2003) Increase in signal-to-noise ratio of >10,000 times in liquid-state NMR. Proc Natl Acad Sci USA 100(18):10158–10163

    Article  Google Scholar 

  5. Bowen S, Hilty C (2008) Time-resolved dynamic nuclear polarization enhanced NMR spectroscopy. Angew Chem Int Edit 47(28):5235–5237

    Google Scholar 

  6. Zeng H, Bowen S, Hilty C (2009) Sequentially acquired two-dimensional NMR spectra from hyperpolarized sample. J Magn Reson 199(2):159–165

    Article  CAS  Google Scholar 

  7. Spraul M, Freund AS, Nast RE, Withers RS, Maas WE, Corcoran O (2003) Advancing NMR sensitivity for LC-NMR-MS using a cryoflow probe: application to the analysis of acetaminophen metabolites in urine. Anal Chem 75(6):1536–1541

    Article  CAS  Google Scholar 

  8. Serber Z, Richter C, Moskau D, Böhlen J-M, Gerfin T, Marek D, Häberli M, Baselgia L, Laukien F, Stern AS, Hoch JC, Dötsch V (2000) New carbon-detected protein NMR experiments using CryoProbes. J Am Chem Soc 122(14):3554–3555

    Article  CAS  Google Scholar 

  9. Doty FD (1996) Probe design and construction. In: Encyclopedia of NMR. Wiley, New York, pp 3753–3763

  10. Lacey ME, Subramanian R, Olson DL, Webb AG, Sweedler JV (1999) High-resolution NMR spectroscopy of sample volumes from 1 nL to 10 μL. Chem Rev 99(10):3133–3152

    Article  CAS  Google Scholar 

  11. Schroeder FC, Gronquist M (2006) Extending the scope of NMR spectroscopy with microcoil probes. Angew Chem Int Edit 45(43):7122–7131

    Article  CAS  Google Scholar 

  12. Olson DL, Peck TL, Webb AG, Magin RL, Sweedler JV (1995) High-resolution microcoil 1H-NMR for mass-limited, nanoliter-volume samples. Science 270(5244):1967–1970

    Article  CAS  Google Scholar 

  13. Jones CJ, Beni S, Limtiaco JFK, Langeslay DJ, Larive CK (2011) Heparin characterization: challenges and solutions. Annu Rev Anal Chem 4:439–465

    Article  CAS  Google Scholar 

  14. Kentgens APM, Bart J, van Bentum PJM, Brinkmann A, van Eck ERH, Gardeniers JGE, Janssen JWG, Knijn P, Vasa S, Verkuijlen MHW (2008) High-resolution liquid- and solid-state nuclear magnetic resonance of nanoliter sample volumes using microcoil detectors. J Chem Phys 128:052202

    Article  CAS  Google Scholar 

  15. Lacey ME, Sweedler JV, Larive CK, Pipe AJ, Farrant RD (2001) 1H NMR characterization of the product from single solid-phase resin beads using capillary NMR flow probes. J Magn Reson 153(2):215–222

    Google Scholar 

  16. Behnia B, Webb AG (1998) Limited-sample NMR using solenoidal microcoils, perfluorocarbon plugs, and capillary spinning. Anal Chem 70(24):5326–5331

    Article  CAS  Google Scholar 

  17. Kautz RA, Goetzinger WK, Karger BL (2004) High-throughput microcoil NMR of compound libraries using zero-dispersion segmented flow analysis. J Comb Chem 7(1):14–20

    Article  Google Scholar 

  18. Kc R, Gowda YN, Djukovic D, Henry ID, Park GHJ, Raftery D (2010) Susceptibility-matched plugs for microcoil NMR probes. J Magn Reson 205(1):63–68

    Article  Google Scholar 

  19. Pusecker K, Schewitz J, Gfrorer P, Tseng LH, Albert K, Bayer E (1998) On line coupling of capillary electrochromatography, capillary electrophoresis, and capillary HPLC with nuclear magnetic resonance spectroscopy. Anal Chem 70(15):3280–3285

    Article  CAS  Google Scholar 

  20. Exarchou V, Krucker M, van Beek TA, Vervoort J, Gerothanassis IP, Albert K (2005) LC–NMR coupling technology: recent advancements and applications in natural products analysis. Magn Reson Chem 43(9):681–687

    Article  CAS  Google Scholar 

  21. Wu N, Peck TL, Webb AG, Magin RL, Sweedler JV (1994) Nanoliter volume sample cells for 1H NMR: application to online detection in capillary electrophoresis. J Am Chem Soc 116(17):7929–7930

    Article  CAS  Google Scholar 

  22. Wu N, Peck TL, Webb AG, Magin RL, Sweedler JV (1994) 1H-NMR spectroscopy on the nanoliter scale for static and online measurements. Anal Chem 66(22):3849–3857

    Google Scholar 

  23. Olson DL, Lacey ME, Webb AG, Sweedler JV (1999) Nanoliter-volume 1H NMR detection using periodic stopped-flow capillary electrophoresis. Anal Chem 71(15):3070–3076

    Article  CAS  Google Scholar 

  24. Rodat A, Gavard P, Couderc F (2009) Improving detection in capillary electrophoresis with laser induced fluorescence via a bubble cell capillary and laser power adjustment. Biomed Chromatogr 23(1):42–47

    Article  CAS  Google Scholar 

  25. Eldridge SL, Almeida VK, Korir AK, Larive CK (2007) Separation and analysis of trace degradants in a pharmaceutical formulation using on-line capillary isotachophoresis-NMR. Anal Chem 79(22):8446–8453

    Article  CAS  Google Scholar 

  26. Kautz RA, Lacey ME, Wolters AM, Foret F, Webb AG, Karger BL, Sweedler JV (2001) Sample concentration and separation for nanoliter-volume NMR spectroscopy using capillary isotachophoresis. J Am Chem Soc 123(13):3159–3160

    Article  CAS  Google Scholar 

  27. Korir A, Larive C (2007) On-line NMR detection of microgram quantities of heparin-derived oligosaccharides and their structure elucidation by microcoil NMR. Anal Bioanal Chem 388(8):1707–1716

    Article  CAS  Google Scholar 

  28. Bocek P, Demi M, Gebauer P, Dolnik V (1988) Analytical isotachophoresis. VCH, New York

  29. Wolters AM, Jayawickrama DA, Larive CK, Sweedler JV (2002) Capillary isotachophoresis/NMR extension to trace impurity analysis and improved instrumental coupling. Anal Chem 74(10):2306–2313

    Article  CAS  Google Scholar 

  30. Krojanski HG, Lambert J, Gerikalan Y, Suter D, Hergenroeder R (2008) Microslot NMR probe for metabolomics studies. Anal Chem 80(22):8668–8672

    Article  CAS  Google Scholar 

  31. Maguire Y, Chuang IL, Zhang S, Gershenfeld N (2007) Ultra-small-sample molecular structure detection using microslot waveguide nuclear spin resonance. Proc Natl Acad Sci USA 104(22):9198–9203

    Article  CAS  Google Scholar 

  32. Fisher G, Petucci C, MacNamara E, Raftery D (1999) NMR probe for the simultaneous acquisition of multiple samples. J Magn Reson 138(1):160–163

    Google Scholar 

  33. Li Y, Wolters AM, Malawey PV, Sweedler JV, Webb AG (1999) Multiple solenoidal microcoil probes for high-sensitivity, high-throughput nuclear magnetic resonance spectroscopy. Anal Chem 71(21):4815–4820

    Article  CAS  Google Scholar 

  34. Jayawickrama DA, Sweedler JV (2004) Dual microcoil NMR probe coupled to cyclic CE for continuous separation and analyte isolation. Anal Chem 76(16):4894–4900

    Article  CAS  Google Scholar 

  35. Danieli E, Perlo J, Blümich B, Casanova F (2010) Small magnets for portable NMR spectrometers. Angew Chem Int Edit 49(24):4133–4135

    CAS  Google Scholar 

  36. Demas V, Herberg JL, Malba V, Bernhardt A, Evans L, Harvey C, Chinn SC, Maxwell RS, Reimer J (2007) Portable, low-cost NMR with laser-lathe lithography produced microcoils. J Magn Reson 189(1):121–129

    Article  CAS  Google Scholar 

  37. McDowell A, Fukushima E (2008) Ultracompact NMR: 1H spectroscopy in a subkilogram magnet. Appl Magn Reson 35(1):185–195

    Article  CAS  Google Scholar 

  38. Diekmann J, Adams KL, Klunder GL, Evans L, Steele P, Vogt C, Herberg JL (2011) Portable microcoil NMR detection coupled to capillary electrophoresis. Anal Chem 83(4):1328–1335

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors gratefully acknowledge financial support from the National Science Foundation grant CHE 0848976.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cynthia K. Larive.

Additional information

Published in the 10th Anniversary Issue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jones, C.J., Larive, C.K. Could smaller really be better? Current and future trends in high-resolution microcoil NMR spectroscopy. Anal Bioanal Chem 402, 61–68 (2012). https://doi.org/10.1007/s00216-011-5330-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-5330-7

Keywords

Navigation