Skip to main content
Log in

Feasibility of using atmospheric pressure matrix-assisted laser desorption/ionization with ion trap mass spectrometry in the analysis of acetylated xylooligosaccharides derived from hardwoods and Arabidopsis thaliana

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The atmospheric pressure matrix-assisted laser desorption/ionization with ion trap mass spectrometry (AP-MALDI-ITMS) was investigated for its ability to analyse plant-derived oligosaccharides. The AP-MALDI-ITMS was able to detect xylooligosaccharides (XOS) with chain length of up to ten xylopyranosyl residues. Though the conventional MALDI–time-of-flight/mass spectrometry (TOF/MS) showed better sensitivity at higher mass range (>m/z 2,000), the AP-MALDI-ITMS seems to be more suitable for detection of acetylated XOS, and the measurement also corresponded better than the MALDI-TOF/MS analysis to the actual compositions of the pentose- and hexose-derived oligosaccharides in a complex sample. The structures of two isomeric aldotetrauronic acids and a mixture of acidic XOS were elucidated by AP-MALDI-ITMS using multi-stages mass fragmentation up to MS3. Thus, the AP-MALDI-ITMS demonstrated an advantage in determining both mass and structures of plant-derived oligosaccharides. In addition, the method of combining the direct endo-1,4-β-d-xylanase hydrolysis of plant material, and then followed by AP-MALDI-ITMS detection, was shown to recognize the substitution variations of glucuronoxylans in hardwood species and in Arabidopsis thaliana. To our knowledge, this is the first report to demonstrate the acetylation of glucuronoxylan in A. thaliana. The method, which requires only a small amount of plant material, such as 1 to 5 mg for the A. thaliana stem material, can be applied as a high throughput fingerprinting tool for the fast comparison of glucuronoxylan structures among plant species or transformants that result from in vivo cell wall modification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Aspinall GO (1980) Chemistry of cell wall polysaccharides. Biochem Plants 3:473–500

    CAS  Google Scholar 

  2. Timell TE (1967) Recent progress in the chemistry of wood hemicelluloses. Wood Sci Technol 1:45–70

    Article  CAS  Google Scholar 

  3. Teleman A, Lundqvist J, Tjerneld F, Stålbrand H, Dahlman O (2000) Characterization of acetylated 4-O-methylglucuronoxylan isolated from aspen employing 1H and 13C NMR spectroscopy. Carbohydr Res 329:807–815

    Article  CAS  Google Scholar 

  4. Naran R, Black S, Decker SR, Azadi P (2009) Extraction and characterization of native heteroxylans from delignified corn stover and aspen. Cellulose 16:661–675

    Article  CAS  Google Scholar 

  5. Goncalves VMF, Evtuguin DV, Domingues MRM (2008) Structural characterization of the acetylated heteroxylan from the natural hybrid Paulownia elongata/Paulownia fortunei. Carbohydr Res 343:256–266

    Article  CAS  Google Scholar 

  6. Evtuguin DV, Tomas JL, Silva AMS, Neto CP (2003) Characterization of an acetylated heteroxylan from Eucalyptus globulus Labill. Carbohydr Res 338:597–604

    Article  CAS  Google Scholar 

  7. Brown DM, Goubet F, Wong VW, Goodacre R, Stephens E, Dupree P, Turner SR (2007) Comparison of five xylan synthesis mutants reveals new insight into the mechanisms of xylan synthesis. Plant J 52:1154–1168

    Article  CAS  Google Scholar 

  8. Peña MJ, Zhong RQ, Zhou GK, Richardson EA, O’Neill MA, Darvill AG, York WS, Zheng HY (2007) Arabidopsis irregular xylem8 and irregular xylem9: implications for the complexity of glucuronoxylan biosynthesis. Plant Cell 19:549–563

    Article  Google Scholar 

  9. Wu AM, Rihouey C, Seveno M, Hörnblad E, Singh SK, Matsunaga T, Ishii T, Lerouge P, Marchant A (2009) The Arabidopsis IRX10 and IRX10-LIKE glycosyltransferases are critical for glucuronoxylan biosynthesis during secondary cell wall formation. Plant J 57:718–731

    Article  CAS  Google Scholar 

  10. Sjöström E (1993) Wood chemistry: fundamentals and applications, 2nd edn. Academic, California

    Google Scholar 

  11. Lerouxel O, Choo TS, Seveno M, Usadel B, Faye L, Lerouge P, Pauly M (2002) Rapid structural phenotyping of plant cell wall mutants by enzymatic oligosaccharide fingerprinting. Plant Physiol 130:1754–1763

    Article  CAS  Google Scholar 

  12. Westphal Y, Schols HA, Voragen AGJ, Gruppen H (2010) MALDI-TOF MS and CE-LIF fingerprinting of plant cell wall polysaccharide digests as a screening tool for Arabidopsis cell wall mutants. J Agric Food Chem 58:4644–4652

    Article  CAS  Google Scholar 

  13. Jacobs A, Dahlman O (2001) Enhancement of the quality of MALDI mass spectra of highly acidic oligosaccharides by using a Nafion-coated probe. Anal Chem 73:405–410

    Article  CAS  Google Scholar 

  14. Enebro J, Momcilovic D, Siika-aho M, Karlsson S (2009) Investigation of endoglucanase selectivity on carboxymethyl cellulose by mass spectrometric techniques. Cellulose 16:271–280

    Article  CAS  Google Scholar 

  15. Jacobs A, Larsson PT, Dahlman O (2001) Distribution of uronic acids in xylans from various species of soft- and hardwood as determined by MALDI mass spectrometry. Biomacromolecules 2:979–990

    Article  CAS  Google Scholar 

  16. Kabel MA, Schols HA, Voragen AGJ (2002) Complex xylo-oligosaccharides identified from hydrothermally treated Eucalyptus wood and brewery's spent grain. Carbohydr Polym 50:191–200

    Article  CAS  Google Scholar 

  17. Teleman A, Nordstrom M, Tenkanen M, Jacobs A, Dahlman O (2003) Isolation and characterization of O-acetylated glucomannans from aspen and birch wood. Carbohydr Res 338:525–534

    Article  CAS  Google Scholar 

  18. Teleman A, Lundqvist J, Tjerneld F, Stålbrand H, Dahlman O (2002) Characterization of water-soluble hemicelluloses from spruce and aspen employing SEC/MALDI mass spectroscopy. Carbohydr Res 337:711–717

    Article  Google Scholar 

  19. Korner R, Limberg G, Mikkelsen JD, Roepstorff P (1998) Characterization of enzymatic pectin digests by matrix-assisted laser desorption/ionization mass spectrometry. J Mass Spectrom 33:836–842

    Article  CAS  Google Scholar 

  20. Zaia J (2004) Mass spectrometry of oligosaccharides. Mass Spectrom Rev 23:161–227

    Article  CAS  Google Scholar 

  21. Powell AK, Harvey DJ (1996) Stabilization of sialic acids in N-linked oligosaccharides and gangliosides for analysis by positive ion matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun Mass Spectrom 10:1027–1032

    Article  CAS  Google Scholar 

  22. Bagag A, Laprevote O, Hirsch J, Kovacik V (2008) Atmospheric pressure photoionization mass spectrometry of per-O-methylated oligosaccharides related to d-xylans. Carbohydr Res 343:2813–2818

    Article  CAS  Google Scholar 

  23. Fernandez LEM, Obel N, Scheller HV, Roepstorff P (2003) Characterization of plant oligosaccharides by matrix-assisted laser desorption/ionization and electrospray mass spectrometry. J Mass Spectrom 38:427–437

    Article  CAS  Google Scholar 

  24. Matamoros Fernandez LE, Obel N, Scheller HV, Roepstorff P (2004) Differentiation of isomeric oligosaccharide structures by ESI tandem MS and GC-MS. Carbohydr Res 339:655–664

    Article  CAS  Google Scholar 

  25. Reis A, Pinto P, Evtuguin DV, Neto CP, Domingues P, Ferrer-Correia AJ, Domingues MRM (2005) Electrospray tandem mass spectrometry of underivatised acetylated xylo-oligosaccharides. Rapid Commun Mass Spectrom 19:3589–3599

    Article  CAS  Google Scholar 

  26. Reis A, Pinto P, Coimbra MA, Evtuguin DV, Neto CP, Ferrer Correia AJ, Domingues MRM (2004) Structural differentiation of uronosyl substitution patterns in acidic heteroxylans by electrospray tandem mass spectrometry. J Am Soc Mass Spectrom 15:43–47

    Article  CAS  Google Scholar 

  27. Quemener B, Ordaz-Ortiz JJ, Saulnier L (2006) Structural characterization of underivatized arabino-xylo-oligosaccharides by negative-ion electrospray mass spectrometry. Carbohydr Res 341:1834–1847

    Article  CAS  Google Scholar 

  28. Reinhold VN, Reinhold BB, Costello CE (1995) Carbohydrate molecular weight profiling, sequence, linkage, and branching data: ES-MS and CID. Anal Chem 67:1772–1784

    Article  CAS  Google Scholar 

  29. Harvey DJ (2006) Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update covering the period 1999-2000. Mass Spectrom Rev 25:595–662

    Article  CAS  Google Scholar 

  30. Laiko VV, Baldwin MA, Burlingame AL (2000) Atmospheric pressure matrix-assisted laser desorption/ionization mass spectrometry. Anal Chem 72:652–657

    Article  CAS  Google Scholar 

  31. Creaser CS, Reynolds JC, Harvey DJ (2002) Structural analysis of oligosaccharides by atmospheric pressure matrix-assisted laser desorption/ionization quadrupole ion trap mass spectrometry. Rapid Commun Mass Spectrom 16:176–184

    Article  CAS  Google Scholar 

  32. Zhang J, LaMotte L, Dodds ED, Lebrilla CB (2005) Atmospheric pressure MALDI fourier transform aass spectrometry of labile oligosaccharides. Anal Chem 77:4429–4438

    Article  CAS  Google Scholar 

  33. Moyer SC, Marzilli LA, Woods AS, Laiko VV, Doroshenko VM, Cotter RJ (2003) Atmospheric pressure matrix-assisted laser desorption/ionization (AP MALDI) on a quadrupole ion trap mass spectrometer. Int J Mass Spectrom 226:133–150

    Article  CAS  Google Scholar 

  34. Tan PV, Taranenko NI, Laiko VV, Yakshin MA, Prasad CR, Doroshenko VM (2004) Mass spectrometry of N-linked oligosaccharides using atmospheric pressure infrared laser ionization from solution. J Mass Spectrom 39:913–921

    Article  CAS  Google Scholar 

  35. Gullón P, González-Muñoz MJ, Domínguez H, Parajó JC (2008) Membrane processing of liquors from Eucalyptus globulus autohydrolysis. J Food Eng 87:257–265

    Article  Google Scholar 

  36. Zablackis E, Huang J, Mueller B, Darvill AG, Albersheim P (1995) Characterization of the cell-wall polysaccharides of Arabidopsis thaliana leaves. Plant Physiol 107:1129–1138

    Article  CAS  Google Scholar 

  37. Packer NH, Lawson MA, Jardine DR, Redmond JW (1998) A general approach to desalting oligosaccharides released from glycoproteins. Glycoconj J 15:737–747

    Article  CAS  Google Scholar 

  38. Enebro J, Karlsson S (2006) Improved matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of carboxymethyl cellulose. Rapid Commun Mass Spectrom 20:3693–3698

    Article  CAS  Google Scholar 

  39. Salo PK, Salomies H, Harju K, Ketola RA, Kotiaho T, Yli-Kauhaluoma J, Kostiainen R (2005) Analysis of small molecules by ultra thin-layer chromatography-atmospheric pressure matrix-assisted laser desorption/ionization mass spectrometry. J Am Soc Mass Spectrom 16:906–915

    Article  CAS  Google Scholar 

  40. Fauré R, Courtin CM, Delcour JA, Dumon C, Faulds CB, Fincher GB, Fort S, Fry SC, Halila S, Kabel MA, Pouvreau L, Quemener B, Rivet A, Saulnier L, Schols HA, Driguez H, O’Donohue MJ (2009) A brief and informationally rich naming system for oligosaccharide motifs of heteroxylans found in plant cell walls. Aust J Chem 62:533–537

    Article  Google Scholar 

  41. Sundberg A, Sundberg K, Lillandt C, Holmbom B (1996) Determination of hemicelluloses and pectins in wood and pulp fibers by acid methanolysis and gas chromatography. Nord Pulp Pap Res J 11:216–226

    Article  CAS  Google Scholar 

  42. Pastell H, Virkki L, Harju E, Tuomainen P, Tenkanen M (2009) Presence of 1→3-linked 2-O-β-d-xylopyranosyl-α-l-arabinofuranosyl side chains in cereal arabinoxylans. Carbohydr Res 344:2480–2488

    Article  CAS  Google Scholar 

  43. Li YCL, Cheng S-W, Chan T-WD (1998) Evaluation of ammonium salts as co-matrixes for matrix-assisted laser desorption/ionization mass spectrometry of oligonucleotides. Rapid Commun Mass Spectrom 12:993–998

    Article  CAS  Google Scholar 

  44. Biely P, Vršanská M, Tenkanen M, Kluepfel D (1997) Endo-β-1,4-xylanase families: differences in catalytic properties. J Biotechnol 57:151–166

    Article  CAS  Google Scholar 

  45. Rantanen H, Virkki L, Tuomainen P, Kabel M, Schols H, Tenkanen M (2007) Preparation of arabinoxylobiose from rye xylan using family 10 Aspergillus aculeatus endo-1,4-β-d-xylanase. Carbohydr Polym 68:350–359

    Article  CAS  Google Scholar 

  46. Pastell H, Tuomainen P, Virkki L, Tenkanen M (2008) Step-wise enzymatic preparation and structural characterization of singly and doubly substituted arabinoxylo-oligosaccharides with non-reducing end terminal branches. Carbohydr Res 343:3049–3057

    Article  CAS  Google Scholar 

  47. Teleman A, Tenkanen M, Jacobs A, Dahlman O (2002) Characterization of O-acetyl-(4-O-methylglucurono)xylan isolated from birch and beech. Carbohydr Res 337:373–377

    Article  CAS  Google Scholar 

  48. Reis A, Domingues MRM, Domingues P, Ferrer-Correia AJ, Coimbra MA (2003) Positive and negative electrospray ionization tandem mass spectrometry as a tool for structural characterization of acid released oligosaccharides from olive pulp glucuronoxylans. Carbohydr Res 338:1497–1505

    Article  CAS  Google Scholar 

  49. Domon B, Costello CE (1988) A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates. Glycoconj J 5:397–409

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Nisse Kalkkinen and Gunilla Rönnholm (Protein Chemistry Research Group, Institute of Biotechnology, Helsinki) for the help in MALDI-TOF/MS analysis. We thank Prof. Juan Carlos Parajó of University of Vigo, Spain for the XOS sample isolated from hydrothermally treated E. globulus wood and Prof. Stefan Willför of Åbo Akademi University, Finland for the aspen, birch and eucalyptus wood powders. The financial support from the Academy of Finland and Formas through the WoodWisdom-Net Programme (HemiPop project no. 1124281) and Glycoscience Graduate School (S.-L.C) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sun-Li Chong.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1.81 mb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chong, SL., Nissilä, T., Ketola, R.A. et al. Feasibility of using atmospheric pressure matrix-assisted laser desorption/ionization with ion trap mass spectrometry in the analysis of acetylated xylooligosaccharides derived from hardwoods and Arabidopsis thaliana . Anal Bioanal Chem 401, 2995–3009 (2011). https://doi.org/10.1007/s00216-011-5370-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-5370-z

Keywords

Navigation