Skip to main content
Log in

Optical fibre gratings as tools for chemical and biochemical sensing

  • Trends
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Optical fibre gratings have recently been suggested as optical platforms for chemical and biochemical sensing. On the basis of the measurement of refractive index changes induced by a chemical and biochemical interaction in the transmission spectrum along the fibres, they are proposed as a possible alternative to the other label-free optical approaches, such as surface plasmon resonance and optical resonators. The combination of the use of optical fibres with the fact that the signal modulation is spectrally encoded offers multiplexing and remote measurement capabilities which the other technology platforms are not able to or can hardly offer. The fundamentals of the different types of optical fibre gratings are described and the performances of the chemical and biochemical sensors based on this approach are reviewed. Advantages and limitations of optical fibre gratings are considered, with a look at new perspectives for their utilization in the field.

Basic configurations of optical fibre gratings: (a) standard fibre Bragg grating; (b) standard long period grating; (c) tilted fibre Bragg grating; (d) etched fibre Bragg grating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Homola J (2008) Chem Rev 108:462–493

    Article  CAS  Google Scholar 

  2. Piliarik M, Homola J (2009) Opt Lett 17:16505–16517

    CAS  Google Scholar 

  3. Fan X, White IM, Shopova SI, Zhu H, Suter JD, Sun Y (2008) Anal Chim Acta 620:8–26

    Article  CAS  Google Scholar 

  4. Eftimov T (2010) In: Zourob M, Lakhtakia A (eds) Optical guided-wave chemical and biosensors II. Springer series on chemical sensors and biosensors, vol. 8, part II. Springer, Heidelberg, pp 151–176

  5. Hill KO, Meltz G (1997) J Lightwave Technol 15:1263–1276

    Article  CAS  Google Scholar 

  6. Erdogan T (1997) J Opt Soc Am A 14:1760–1773

    Article  Google Scholar 

  7. Stewart G, Jin W, Culshaw B (1997) Sens Actuators B 38–39:42–47

    Article  Google Scholar 

  8. Harrick NJ (1967) Internal reflection spectroscopy. Interscience, London, pp xiv, 327

  9. Chen C, Caucheteur C, Mégret P, Albert J (2007) Meas Sci Technol 18:3117–3122

    Article  CAS  Google Scholar 

  10. Iadicicco A, Cusano A, Cutolo A, Bernini R, Giordano M (2004) IEEE Photon Technol Lett 16:1149–1151

    Article  Google Scholar 

  11. Trono C, Baldini F, Brenci M, Chiavaioli F, Mugnaini M (2011) Meas Sci Technol 22:075204

    Article  Google Scholar 

  12. Falciai R, Mignani AG, Vannini A (2001) Sens Actuators B 74:74–77

    Article  Google Scholar 

  13. Liang W, Huang Y, Xu Y, Lee RK, Yariv A (2005) Appl Phys Lett 86:151122–151124

    Article  Google Scholar 

  14. Cusano A, Iadicicco A, Campopiano S, Giordano M, Cutolo A (2005) J Opt A Pure Appl Opt 7:734–741

    Article  CAS  Google Scholar 

  15. Shevchenko Y, Albert J (2007) Opt Lett 32:211–213

    Article  CAS  Google Scholar 

  16. Korposh S, Lee SW, James SW, Tatam R (2011) Meas Sci Technol 22:075208

    Article  Google Scholar 

  17. Shu X, Huang D (1999) Opt Commun 171:65–69

    Article  CAS  Google Scholar 

  18. Patrick HJ, Kersey AD, Bucholtz F (1998) J Lightwave Technol 16:1606–1612

    Article  CAS  Google Scholar 

  19. Allsop T, Zhang L, Bennion I (2001) Opt Commun 191:181–190

    Article  CAS  Google Scholar 

  20. Bey SKAK, Lam CCC, Sun T, Grattan KTV (2008) Sens Actuators A 141:390–395

    Article  Google Scholar 

  21. Tang JL, Wang JN (2007) Smart Mater Struct 16:665–672

    Article  CAS  Google Scholar 

  22. Gu Z, Xu Y (2007) Meas Sci Technol 18:3530–3536

    Article  CAS  Google Scholar 

  23. Corres JM, Del Villar I, Matias IR, Arregui FJ (2007) Opt Lett 32:29–31

    Article  Google Scholar 

  24. Cusano A, Iadicicco A, Pilla P, Contesa L, Campopiano S, Cutolo A, Giordano M, Guerra G (2006) J Lightwave Technol 24:1776–1786

    Article  CAS  Google Scholar 

  25. Maier RRJ, Jones BJS, Barton JS, McCulloch S, Allsop T, Jones JDC, Bennion I (2007) J Opt A Pure Appl Opt 9:S45–S49

    Article  CAS  Google Scholar 

  26. Wei X, Wei T, Xiao H, Lin YS (2008) Sens Actuators B 134:687–693

    Article  Google Scholar 

  27. Tang X, Remmel K, Lan X, Deng J, Xiao H, Dong J (2009) Anal Chem 81:7844–7848

    Article  CAS  Google Scholar 

  28. Barnes JA, Brown RS, Cheung AH, Dreher MA, Mackey G, Loock H-P (2010) Sens Actuators B 148:221–226

    Article  Google Scholar 

  29. Foglia Manzillo P, Pilla P, Campopiano S, Borriello A, Giordano M, Cusano A (2010) Proc SPIE 7653:76531Y

  30. Wang Z, Heflin JR, Van Cott K, Stolen RH, Ramachandran S, Ghalmi S (2009) Sens Actuators B 139:618–623

    Article  Google Scholar 

  31. Wang Z, Xiao H (2009) IEEE Signal Process Mag 26:121–122, 124–127

    Google Scholar 

  32. Smietana M, Bock WJ, Mikulic P, Ng A, Chinnappan R, Zourub M (2011) Opt Express 19:7971–7978

    Article  CAS  Google Scholar 

  33. Chen X, Zhang L, Zhou K, Davies E, Sugden K, Bennion I, Hughes M, Hine A (2007) Opt Lett 32:2541–2543

    Article  CAS  Google Scholar 

  34. Hine AV, Chen X, Hughes MD, Zhou K, Davies E, Sugden K, Bennion I, Zhang L (2009) Biochem Soc Trans 37:445–449

    Article  CAS  Google Scholar 

  35. DeLisa MP, Zhang Z, Shiloach M, Pilevar S, Davis CC, Sirkis JS, Bentley WE (2000) Anal Chem 72:2895–2900

    Article  CAS  Google Scholar 

  36. Pilla P, Malachovská V, Sandomenico A, Ruvo M, Giordano M, Cutolo A, Cusano A (2010) Proc SPIE 7653:76531X–1

    Article  Google Scholar 

  37. Yang J, Sandhu P, Liang W, Xu CQ, Li Y (2007) IEEE J Sel Top Quantum Electron 13:1691–1696

    Article  CAS  Google Scholar 

  38. Kim DW, Zhang Y, Cooper KL, Wang A (2006) Electron Lett 42:324–325

    Article  Google Scholar 

  39. Mishra V, Singh N, Tiwari U, Kapur P (2011) Sens Actuators A 167:279–290

    Article  Google Scholar 

  40. James SW, Rees ND, Ashwell GJ, Tatam RP (2002) Opt Lett 9:686–688

    Google Scholar 

  41. Del Villar I, Matias IR, Arregui FJ, Lalanne P (2005) Opt Express 15:56–69

    Article  Google Scholar 

  42. Cusano A, Iadicicco A, Pilla P, Contessa L, Campopiano S, Cutolo A, Giordano M (2006) Opt Express 14:19–34

    Article  CAS  Google Scholar 

  43. Shevchenko YY, Blair DAD, Derosa MC, Albert J (2008) In: Conference on lasers and electro-optics (CLEO-2008, San Jose, CA), paper CMJ4

  44. Tang JL, Cheng SF, Hsu WT, Chiang TY, Chau LK (2006) Sens Actuators B 119:105–109

    Article  Google Scholar 

  45. Chryssis AN, Saini SS, Lee SM, Yi H, Bentley WE, Dagenais M (2005) IEEE J Sel Top Quantum Electron 11:864–872

    Article  CAS  Google Scholar 

  46. Jang HS, Park KN, Kim PJ, Sim SJ, Kwon OJ, Han YG, Lee KS (2009) Opt Express 17:3855–3860

    Article  CAS  Google Scholar 

  47. Pilla P, Malachovska V, Borriello A, Buosciolo A, Giordano M, Ambrosio L, Cutolo A, Cusano A (2011) Opt Express 19:512–526

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Baldini.

Additional information

Published in the 10th Anniversary Issue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baldini, F., Brenci, M., Chiavaioli, F. et al. Optical fibre gratings as tools for chemical and biochemical sensing. Anal Bioanal Chem 402, 109–116 (2012). https://doi.org/10.1007/s00216-011-5492-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-5492-3

Keywords

Navigation