Skip to main content
Log in

Immunodetection of inactivated Francisella tularensis bacteria by using a quartz crystal microbalance with dissipation monitoring

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Francisella tularensis are very small, gram-negative bacteria which are capable of infecting a number of mammals. As a highly pathogenic species, it is a potential bioterrorism agent. In this work we demonstrate a fast immunological detection system for whole F. tularensis bacteria. The technique is based on a quartz crystal microbalance with dissipation monitoring (QCMD), which uses sensor chips modified by a specific antibody. This antibody is useful as a capture molecule to capture the lipopolysaccharide structure on the surface of the bacterial cell wall. The QCMD technique is combined with a microfluidic system and allows the label-free online detection of the binding of whole bacteria to the sensor surface in a wide dynamic concentration range. A detection limit of about 4 × 103 colony-forming units per milliliter can be obtained. Furthermore, a rather short analysis time and a clear discrimination against other bacteria can be achieved. Additionally, we demonstrate two possibilities for specific and significant signal enhancement by using antibody-functionalized gold nanoparticles or an enzymatic precipitation reaction. These additional steps can be seen as further proof of the specificity and validity.

Operating principle. Figure illustrates binding of F.tularensis bacteria onto the gold surface of a quartz crystal microbalance (QCM) sensor chip and two different approaches of signal enhancement using gold nanoparticles (Au-NPs)- or peroxidase (POD)-modified antibodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ellerbrok H, Dorner B, Nitsche A, Grunow R, Bannert N, Naumann D, Hermann M, Schleenbecker U, Kage A, Schade R, Fürste J-P, Miethe P, Lauster R, St Becker, Pfaff G, Weigel W, Lisdat F, Gluch C (2011) Challenge Int Forum Med CBRN Def 1:15–18

    Google Scholar 

  2. McCoy GW, Chapin CW (1912) Public Health Bull 53:17–23

    Google Scholar 

  3. Ellis J, Oyston PC, Green M (2002) Titball RW 15(4):631–646

    Google Scholar 

  4. Karlsson KA, Dahlstrand S, Hanko E, Soderlind O (1970) Acta Pathol Microbiol Scand B Microbiol Immunol 78(5):647–651

    CAS  Google Scholar 

  5. Morner T (1981) Acta Vet Scand 22:296–306

    CAS  Google Scholar 

  6. Morner T, Sandstrom G, Mattsson R (1988) J Wildl Dis 24(1):10–14

    CAS  Google Scholar 

  7. Nano FE, Elkins KL (2007) Francisella. In: Boriello SP, Murray PR, Funke G (eds) Topley and Wilson's microbiology and microbial infections, vol 2, 10th edn. Hodder Arnold, London, UK, pp 1752–1760

  8. Eliasson H, Lindback J, Nuorti JP, Arneborn M, Giesecke J, Tegnell A (2002) Emerg Infect Dis 8(9):956–960

    Article  Google Scholar 

  9. Feldman KA (2003) J Am Vet Med Assoc 222(6):725–730

    Article  Google Scholar 

  10. Plourde PJ, Embree J, Friesen F, Lindsay G, Williams T (1992) CMAJ 146(11):1953–1955

    CAS  Google Scholar 

  11. World Health Organization (2007) WHO guidelines on tularaemia. WHO/CDS/EPR/2007.7. World Health Organization, Geneva

    Google Scholar 

  12. Oyston PC, Sjostedt A, Titball RW (2004) Nat Rev Microbiol 2(12):967–978. doi:10.1038/nrmicro1045

    Article  CAS  Google Scholar 

  13. Dennis DT, Inglesby TV, Henderson DA, Bartlett JG, Ascher MS, Eitzen E, Fine AD, Friedlander AM, Hauer J, Layton M, Lillibridge SR, McDade JE, Osterholm MT, O'Toole T, Parker G, Perl TM, Russell PK, Tonat K (2001) Tularemia JAMA 285(21):2763–2773

    Article  CAS  Google Scholar 

  14. Downs CM, Coriell LL et al (1947) J Bacteriol 53(1):89–100

    Google Scholar 

  15. Forsman M, Sandstrom G, Jaurin B (1990) Appl Environ Microbiol 56(4):949–955

    CAS  Google Scholar 

  16. Forsman M, Sandstrom G, Sjostedt A (1994) Int J Syst Bacteriol 44(1):38–46

    Article  CAS  Google Scholar 

  17. Johansson A, Berglund L, Eriksson U, Goransson I, Wollin R, Forsman M, Tarnvik A, Sjostedt A (2000) J Clin Microbiol 38(1):22–26

    CAS  Google Scholar 

  18. Tomaso H, Scholz HC, Neubauer H, Al Dahouk S, Seibold E, Landt O, Forsman M, Splettstoesser WD (2007) Mol Cell Probes 21(1):12–16. doi:10.1016/j.mcp.2006.06.001

    Article  CAS  Google Scholar 

  19. Carlsson HE, Lindberg AA, Lindberg G, Hederstedt B, Karlsson KA, Agell BO (1979) J Clin Microbiol 10(5):615–621

    CAS  Google Scholar 

  20. Pohanka M, Pavlis O, Kroca M (2008) Def Sci J 58(5):698–702

    CAS  Google Scholar 

  21. Grunow R, Splettstoesser W, McDonald S, Otterbein C, O'Brien T, Morgan C, Aldrich J, Hofer E, Finke EJ, Meyer H (2000) Clin Diagn Lab Immunol 7(1):86–90

    CAS  Google Scholar 

  22. Schmitt P, Splettstosser W, Porsch-Ozcurumez M, Finke EJ, Grunow R (2005) Epidemiol Infect 133(4):759–766

    Article  CAS  Google Scholar 

  23. Porsch-Ozcurumez M, Kischel N, Priebe H, Splettstosser W, Finke EJ, Grunow R (2004) Clin Diagn Lab Immunol 11(6):1008–1015. doi:10.1128/CDLI.11.6.1008-1015.2004

    Google Scholar 

  24. Grunow R, Miethe P, Conlan W, Finke E-J, Friedewald S, Porsch-Özcürümez M (2008) J Rapid Methods Autom Microbiol 16:30–54

    Article  Google Scholar 

  25. Lazcka O, Del Campo FJ, Munoz FX (2007) Biosens Bioelectron 22(7):1205–1217. doi:10.1016/j.bios.2006.06.036

    Article  CAS  Google Scholar 

  26. DeMarco DR, Saaski EW, McCrae DA, Lim DV (1999) J Food Prot 62(7):711–716

    CAS  Google Scholar 

  27. Liu Y, Ye J, Li Y (2003) J Food Prot 66(3):512–517

    Google Scholar 

  28. Abdel-Hamid I, Ivnitski D, Atanasov P, Wilkins E (1998) Electroanalysis 10(11):758–763

    Article  CAS  Google Scholar 

  29. Tu SI, Uknalis J, Irwin P, Yu LSL (2000) J Rapid Methods Autom Microbiol 8:95–109

    Article  CAS  Google Scholar 

  30. Fratamico PM, Strobaugh TP, Medina MB, Gehring AG (1998) Biotechnol Tech 12(7):571–576

    Article  CAS  Google Scholar 

  31. Mejri MB, Baccar H, Baldrich E, Del Campo FJ, Helali S, Ktari T, Simonian A, Aouni M, Abdelghani A (2010) Biosens Bioelectron 26(4):1261–1267. doi:10.1016/j.bios.2010.06.054

    Article  CAS  Google Scholar 

  32. King WH (1964) Anal Chem 36(9):1735–1739

    Article  CAS  Google Scholar 

  33. Sauerbrey G (1959) Z Phys 155:206

    Article  CAS  Google Scholar 

  34. Marx KA (2003) Biomacromolecules 4(5):1099–1120. doi:10.1021/bm020116i

    Article  CAS  Google Scholar 

  35. Jia XE et al (2006) Chin Chem Lett 17(4):509–512

    CAS  Google Scholar 

  36. Hong SR, Jeong HD, Hong S (2010) Talanta 82(3):899–903. doi:10.1016/j.talanta.2010.04.065

    Article  CAS  Google Scholar 

  37. Shen Z, Huang M, Xiao C, Zhang Y, Zeng X, Wang PG (2007) Anal Chem 79(6):2312–2319. doi:10.1021/ac061986j

    Article  CAS  Google Scholar 

  38. Su XL, Li Y (2005) Biosens Bioelectron 21(6):840–848. doi:10.1016/j.bios.2005.01.021

    Article  CAS  Google Scholar 

  39. Su XL, Li Y (2004) Biosens Bioelectron 19(6):563–574

    Article  CAS  Google Scholar 

  40. Pohanka M, Pavlis O, Skladal P (2007) Talanta 71(2):981–985. doi:10.1016/j.talanta.2006.05.074

    Article  CAS  Google Scholar 

  41. Pohanka M, Skladal P (2007) Folia Microbiol (Praha) 52(4):325–330

    Article  CAS  Google Scholar 

  42. Bellino MG, Calvo EJ, Gordillo G (2004) Phys Chem. Chem Phys 6:424–428

    Article  CAS  Google Scholar 

  43. Goka S, Okabe K, Watanabe Y, Sekimoto H (2000) Jpn J Appl Phys Part 1 39:3073. doi:10.1143/JJAP.39.3073

    Article  CAS  Google Scholar 

  44. Sullivan R, Fassolitis AC, Larkin EP, Read RB Jr, Peeler JT (1971) Inactivation Appl Microbiol 22(1):61–65

    CAS  Google Scholar 

  45. Kepplinger C, Lisdat F, Wollenberger U (2011) Langmuir 27(13):8309–8315

    Article  CAS  Google Scholar 

  46. Yakovleva ME, Moran AP, Safina GR, Wadstrom T, Danielsson B (2011) Anal Chim Acta 694(1–2):1–5. doi:10.1016/j.aca.2011.03.014

    Article  CAS  Google Scholar 

  47. Santos-Martinez MJ, Inkielewicz-Stepniak I, Medina C, Rahme K, D'Arcy DM, Fox D, Holmes JD, Zhang H, Radomski MW (2012) Int J Nanomed 7:243–255. doi:10.2147/IJN.S26679ijn-7-243

    Article  CAS  Google Scholar 

  48. Gutierrez R, Gonzalez I, Garcia T, Carrera E, Sanz B, Hernandez PE, Martin R (1997) J Food Prot 60(1):23–27

    CAS  Google Scholar 

  49. Balkenhohl T, Lisdat F (2007) Anal Chim Acta 597(1):50–57. doi:10.1016/j.aca.2007.06.041

    Article  CAS  Google Scholar 

  50. Balkenhohl T, Lisdat F (2007) Analyst 132(4):314–322. doi:10.1039/b609832k

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by BMBF (Federal Ministry for Education and Research, Germany) in the context of the national safety research program via the BiGRUDI project (13N9593).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Kleo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kleo, K., Schäfer, D., Klar, S. et al. Immunodetection of inactivated Francisella tularensis bacteria by using a quartz crystal microbalance with dissipation monitoring. Anal Bioanal Chem 404, 843–851 (2012). https://doi.org/10.1007/s00216-012-6172-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-6172-7

Keywords

Navigation