Skip to main content
Log in

Selective fluorescence response and magnetic separation probe for 2,4,6-trinitrotoluene based on iron oxide magnetic nanoparticles

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Despite the rapid development of nanomaterials and nanotechnology, it is still desirable to develop novel nanoparticle-based techniques which are cost-effective, timesaving, and environment-friendly, and with ease of operation and procedural simplicity, for assay of target analytes. In the work discussed in this paper, the dye fluorescein isothiocyanate (FITC) was conjugated to 1,6-hexanediamine (HDA)-capped iron oxide magnetic nanoparticles (FITC–HDA Fe3O4 MNPs), and the product was characterized. HDA ligands on the surface of Fe3O4 MNPs can bind 2,4,6-trinitrotoluene (TNT) to form TNT anions by acid–base pairing interaction. Formation of TNT anions, and captured TNT substantially affect the emission of FITC on the surface of the Fe3O4 MNPs, resulting in quenching of the fluorescence at 519 nm. A novel FITC–HDA Fe3O4 MNPs-based probe featuring chemosensing and magnetic separation has therefore been constructed. i.e. FITC–HDA Fe3O4 MNPs had a highly selective fluorescence response and enabled magnetic separation of TNT from other nitroaromatic compounds by quenching of the emission of FITC and capture of TNT in aqueous solution. Very good linearity was observed for TNT concentrations in the range 0.05–1.5 μmol L−1, with a detection limit of 37.2 nmol L−1 and RSD of 4.7 % (n = 7). Approximately 12 % of the total amount of TNT was captured. The proposed methods are well-suited to trace detection and capture of TNT in aqueous solution.

Iron oxide magnetic nanoparticles-based selective fluorescent response and magnetic separation probe for 2,4,6-trinitrotoluene

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Salgueiriño-Maceira V, Correa-Duarte MA (2007) Adv Mater 19:4131–4144

    Article  Google Scholar 

  2. Chen H, Deng C, Zhang X (2010) Angew Chem Int Ed 49:607–611

    Article  CAS  Google Scholar 

  3. Liu S, Chen H, Lu X, Deng C, Zhang X, Yang P (2010) Angew Chem Int Ed 49:7557–7561

    Article  CAS  Google Scholar 

  4. Fan HM, Olivo M, Shuter B, Yi JB, Bhuvaneswari R, Tan HR, Xing GC, Ng CT, Liu L, Lucky SS, Bay BH, Ding J (2010) J Am Chem Soc 132:14803–14811

    Article  CAS  Google Scholar 

  5. Lee JE, Lee N, Kim H, Kim J, Choi SH, Kim JH, Kim T, Song IC, Park SP, Moon WK, Hyeon T (2010) J Am Chem Soc 132:552–557

    Article  CAS  Google Scholar 

  6. Lai CW, Wang YH, Lai CH, Yang MJ, Chen CY, Chou PT, Chan CS, Chi Y, Chen YC, Hsiao JK (2008) Small 4:218–224

    Article  CAS  Google Scholar 

  7. Santra S, Kaittanis C, Grimm J, Perez JM (2009) Small 5:1862–1868

    Article  CAS  Google Scholar 

  8. Cheong S, Ferguson P, Feindel KW, Hermans IF, Callaghan PT, Meyer C, Slocombe A, Su CH, Cheng FY, Yeh CS, Ingham B, Toney MF, Tilley RD (2011) Angew Chem Int Ed 50:4206–4209

    Article  CAS  Google Scholar 

  9. Ninjbadgar T, Brougham DF (2011) Adv Funct Mater 21:4769–4775

    Article  CAS  Google Scholar 

  10. Kinsella JM, Ananda S, Andrew JS, Grondek JF, Chien MP, Scadeng M, Gianneschi NC, Ruoslahti E, Sailor MJ (2011) Adv Mater 23:H248–H253

    Article  CAS  Google Scholar 

  11. Chung HJ, Lee H, Bae KH, Lee Y, Park J, Cho SW, Hwang JY, Park H, Langer R, Anderson D, Park TG (2011) ACS Nano 5:4329–4339

    Article  CAS  Google Scholar 

  12. Dong W, Li Y, Niu D, Ma Z, Gu J, Chen Y, Zhao W, Liu X, Liu C, Shi J (2011) Adv Mater 23:5392–5397

    Article  CAS  Google Scholar 

  13. Liu J, Du X, Zhang X (2011) Chem Eur J 17:810–815

    Article  CAS  Google Scholar 

  14. Valeur B (2002) Molecular Fluorescence. Wiley–VCH, Weinheim

    Google Scholar 

  15. Zou WS, Yang J, Yang TT, Hu X, Lian HZ (2012) J Mater Chem 22:4720–4727

    Article  CAS  Google Scholar 

  16. Vollath D (2010) Adv Mater 22:4410–4415

    Article  CAS  Google Scholar 

  17. Stobiecka M, Molinero AA, Chałupa A, Hepel M (2012) Anal Chem 84:4970–4978

    Article  CAS  Google Scholar 

  18. Stobiecka M, Hepel M (2011) Phys Chem Chem Phys 13:1131–1139

    Article  CAS  Google Scholar 

  19. Dillewijn PV, Couselo JL, Corredoira E, Delgado A, Wittich RM, Ballester A, Ramos JL (2008) Environ Sci Technol 42:7405–7410

    Article  Google Scholar 

  20. Hawari J, Beaudet S, Halasz A, Thiboutot S, Ampleman G (2000) Appl Microbiol Biotechnol 54:605–618

    Article  CAS  Google Scholar 

  21. Nipper M, Carr RS, Biedenbach JM, Hooten RC, Miller K, Saepoff S (2001) Arch Environ Contam Toxicol 41:308–318

    Article  CAS  Google Scholar 

  22. Nipper M, Carr RS, Biedenbach JM, Hooten RC, Miller K (2002) Mar Pollut Bull 44:789–806

    Article  CAS  Google Scholar 

  23. Singh S (2007) J Hazard Mater 144:15–28

    Article  CAS  Google Scholar 

  24. Hathaway JA (1976) Saf Semin 9:693–697

    Google Scholar 

  25. Djerassi LS (1998) Occup Environ Health 71:26–28

    Google Scholar 

  26. Djerassi LS, Vitany L (1975) Br J Ind Med 32:54–58

    CAS  Google Scholar 

  27. Tu R, Liu B, Wang Z, Gao D, Wang F, Fang Q, Zhang Z (2008) Anal Chem 80:3458–3465

    Article  CAS  Google Scholar 

  28. Zou WS, Qiao JQ, Hu X, Ge X, Lian HZ (2011) Anal Chim Acta 708:134–140

    Article  CAS  Google Scholar 

  29. Wang YQ, Zou WS (2011) Talanta 85:469–475

    Article  CAS  Google Scholar 

  30. Zou WS, Sheng D, Ge X, Qiao JQ, Lian HZ (2011) Anal Chem 83:30–37

    Article  CAS  Google Scholar 

  31. Zhang K, Zhou H, Mei Q, Wang S, Guan G, Liu R, Zhang J, Zhang Z (2011) J Am Chem Soc 133:8424–8427

    Article  CAS  Google Scholar 

  32. Gao D, Yang Z, Liu B, Ni L, Wu M, Zhang Z (2008) Anal Chem 80:8545–8553

    Article  CAS  Google Scholar 

  33. Pramanik S, Zheng C, Zhang X, Emge TJ, Li J (2011) J Am Chem Soc 133:4153–4155

    Article  CAS  Google Scholar 

  34. Gao M, Deng C, Fan Z, Yao N, Xu X, Yang P, Zhang X (2007) Small 3:1714–1717

    Article  CAS  Google Scholar 

  35. Dasary SSR, Singh AK, Senapati D, Yu H, Ray PC (2009) J Am Chem Soc 131:13806–13812

    Article  CAS  Google Scholar 

  36. Jiang Y, Zhao H, Zhu N, Lin Y, Yu P, Mao L (2008) Angew Chem Int Ed 47:8601–8604

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Doctor Foundation (2012) and the College Students’ Science and Technology Innovation Fund (C12073 and C10047) of Anhui University of Architecture. The authors also thank the National Natural Science Foundation of China (21201005, 21171004) and Anhui Natural Science Foundation (KJ2012Z052) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Sheng Zou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zou, WS., Wang, YQ., Wang, F. et al. Selective fluorescence response and magnetic separation probe for 2,4,6-trinitrotoluene based on iron oxide magnetic nanoparticles. Anal Bioanal Chem 405, 4905–4912 (2013). https://doi.org/10.1007/s00216-013-6873-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-6873-6

Keywords

Navigation