Skip to main content
Log in

Determination of heavy polycyclic aromatic hydrocarbons of concern in edible oils via excitation–emission fluorescence spectroscopy on nylon membranes coupled to unfolded partial least-squares/residual bilinearization

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Seven heavy polycyclic aromatic hydrocarbons (PAHs) of concern on the US Environmental Protection Agency priority pollutant list (benzo[a]anthracene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, dibenz[a,h]anthracene, benzo[g,h,i]perylene, and indeno[1,2,3-c,d]-pyrene) were simultaneously analyzed in extra virgin olive oil. The analysis is based on the measurement of excitation–emission matrices on nylon membrane and processing of data using unfolded partial least-squares regression with residual bilinearization (U-PLS/RBL). The conditions needed to retain the PAHs present in the oil matrix on the nylon membrane were evaluated. The limit of detection for the proposed method ranged from 0.29 to 1.0 μg kg−1, with recoveries between 64 and 78 %. The predicted U-PLS/RBL concentrations compared favorably with those measured using high-performance liquid chromatography with fluorescence detection. The proposed method was applied to ten samples of edible oil, two of which presented PAHs ranging from 0.35 to 0.63 μg kg−1. The principal advantages of the proposed analytical method are that it provides a significant reduction in time and solvent consumption with a similar limit of detection as compared with chromatography.

The excitation-emission fluorescence spectroscopy on nylon membranes, associated with U-PLS/RBL, is a useful tool for resolving a mixture of PAHs in the presence of a complex matrix such as that of edible oils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Simon R, Ruiz JAG, VonHolst C, Wenzl T, Anklam E (2008) Results of a European inter-laboratory comparison study on the determination of EU priority polycyclic aromatic hydrocarbons (PAHs) in edible vegetable oils. Anal Bioanal Chem 391:1397–1408

    Article  CAS  Google Scholar 

  2. Teixeira VH, Casal S, Oliveira MB (2007) PAHs content in sunflower, soybean and virgin olive oils: evaluation in commercial samples and during refining process. Food Chem 104:106–112

    Article  CAS  Google Scholar 

  3. Arrebola FJ, Frenich AG, Rodríguez MJG, Bolaños PP, Vidal JLM (2006) Determination of polycyclic aromatic hydrocarbons in olive oil by a completely automated headspace technique coupled to gas chromatography–mass spectrometry. J Mass Spectr 41:822–829

    Article  CAS  Google Scholar 

  4. Moret S, Conte LS (2000) Polycyclic aromatic hydrocarbons in edible fats and oils: occurrence and analytical methods. J Chromatogr A 882:245–253

    Article  CAS  Google Scholar 

  5. Lage MA, Cortizo JL (2005) Supercritical fluid extraction and high-performance liquid chromatography–fluorescence detection method for polycyclic aromatic hydrocarbons investigation in vegetable oil. Food Control 16:59–64

    Article  Google Scholar 

  6. Boletín Oficial del Estado (España). Límites de Determinados Hidrocarburos Aromáticos Policíclicos en Aceite de Orujo de Oliva. No. 178 (2001) 27398. Orden de 25 de julio de 2001, Madrid, Spain

  7. Commission of the European Communities (2006) Commission Regulation (EU) No. 835/2011 of 19 August 2011 amending Regulation (EC) No. 188/2006 as regards maximum levels for polycyclic aromatic hydrocarbons in foodstuffs", Official Journal of the European Union, 2011, L 215/4: 1–5

  8. Ministerio de Salud Republica de Chile. Reglamento Sanitario de los Alimentos DTO No. 977/96 Modificación Dto 115/03 Minsal, Articulo 249 (2009) 97–98, Santiago, Chile

  9. Booksh KS, Muroski AR, Myrick ML (1996) Single-measurement excitation/emission matrix spectrofluorometer for determination of hydrocarbons in ocean water. 2. Calibration and quantitation of naphthalene and styrene. Anal Chem 68:3539–3544

    Article  CAS  Google Scholar 

  10. Sikorska E, Górecki T, Khmelinskii IV, Sikorski M, Koziol J (2005) Classification of edible oils using synchronous scanning fluorescence spectroscopy. Food Chem 89:217–225

    Article  CAS  Google Scholar 

  11. Escandar GM, Faber NM, Goicochea HC, Muñoz de la Peña A, Olivieri AC, Poppi RJ (2007) Second- and third-order multivariate calibration: data, algorithms and applications. Trends Anal Chem 26:752–765

    Article  CAS  Google Scholar 

  12. Olivieri AC (2008) Analytical advantages of multivariate data processing. One, two, three, infinity? Anal Chem 80:5713–5720

    Article  CAS  Google Scholar 

  13. Bortolato SA, Arancibia JA, Escandar GM (2008) Chemometrics-assisted excitation-emission fluorescence spectroscopy on nylon membranes. Simultaneous determination of benzo[a]pyrene and dibenz[a, h]anthracene at parts-per-trillion levels in the presence of the remaining EPA PAH priority pollutants as interferences. Anal Chem 80:8276–8286

    Article  CAS  Google Scholar 

  14. Bortolato SA, Arancibia JA, Escandar GM (2011) Chemometrics-assisted fluorimetry for the rapid and selective determination of heavy polycyclic aromatic hydrocarbons in contaminated river waters and activated sludges. Environ Sc Technol 45:1513–1520

    Article  CAS  Google Scholar 

  15. Whitcomb JL, Campiglia AD (2001) Screening potential of solid-phase extraction and solid surface room temperature fluorimetry for polycyclic aromatic hydrocarbons in water samples. Talanta 55:509–518

    Article  CAS  Google Scholar 

  16. Whitcomb JL, Bystol AJ, Campiglia AD (2002) Time-resolved laser-induced fluorimetry for screening polycylic aromatic hydrocarbons on solid-phase extraction membranes. Anal Chim Acta 464:271–272

    Article  Google Scholar 

  17. Bortolato SA, Arancibia JA, Escandar GM (2008) A novel application of nylon membranes to the luminescent determination of benzo[a]pyrene at ultra trace levels in water samples. Anal Chim Acta 613:218–227

    Article  CAS  Google Scholar 

  18. Goicoechea HC, calimag-Williams K, Campiglia AD (2012) Multi-way partial least-squares and residual bi-linearization for the direct determination of monohydroxy-polycyclic aromatic hydrocarbons on octadecyl membranes via room-temperature fluorescence excitation emission matrices. Anal Chim Acta 717(100)

  19. Straif K, Baan R, Grosse Y, Secretan B, Ghissassi FE, Cogliano V (2005) Carcinogenicity of polycyclic aromatic hydrocarbons. Lancet oncol 6:931–932

    Article  Google Scholar 

  20. Wold S, Geladi P, Esbensen K, Öhman J (1987) Multi-way principal components and PLS analysis. J Chemom 1:41–56

    Article  CAS  Google Scholar 

  21. Olivieri AC (2005) On a versatile second-order multivariate calibration method based on partial least-squares and residual bilinearization: second-order advantage and precision properties. J Chemom 19:253–265

    Article  CAS  Google Scholar 

  22. Haaland DM, Thomas EV (1988) Partial least-squares methods for spectral analyses. 1. Relation to other quantitative calibration methods and the extraction of qualitative information. Anal Chem 60:1193–1202

    Article  CAS  Google Scholar 

  23. ÖhmanJ GP, Wold S (1990) Residual bilinearization. Part 1: theory and algorithms. J Chemom 4:79–90

    Article  Google Scholar 

  24. Zepp RG, Sheldon WM, Moran MA (2004) Dissolved organic fluorophores in southeastern US coastal waters: correction method for eliminating Rayleigh and Raman scattering peaks in excitation–emission matrices. Mar Chem 89:15–36

    Article  CAS  Google Scholar 

  25. MATLAB 6.0, The MathWorks Inc., Natick, MA, USA, 2000

  26. University of Copenhagen http://www.models.kvl.dk/algorithms. Accessed 20 May 2013

  27. Olivieri AC, Wu HL, Yu RQ (2009) MVC2: A MATLAB graphical interface toolbox for second-order multivariate calibration. Chemom Intell Lab Syst 96:246–251

    Article  CAS  Google Scholar 

  28. Chemometry Consultancy. http://www.chemometry.com. Accessed 26 March 2013)

  29. Fuentes E, Báez M, Díaz J (2009) Microwave-assisted extraction at atmospheric pressure coupled to different clean-up methods for the determination of organophosphorous pesticides in olive and avocado oil. J Chromatogr A 1216:8859–8866

    Article  CAS  Google Scholar 

  30. Alarcón F, Báez ME, Bravo M, Richter P, Fuentes E (2012) Screening of edible oils for polycyclic aromatic hydrocarbons using microwave-assisted liquid–liquid and solid phase extraction coupled to one- to three-way fluorescence spectroscopy analysis. Talanta 100:439–446

    Article  Google Scholar 

  31. Alarcón F, Báez ME, Bravo M, Richter P, Escandar GM, Olivieri AC, Fuentes E (2013) Feasibility of the determination of polycyclic aromatic hydrocarbons in edible oils via unfolded partial least-squares/residual bilinearization and parallel factor analysis of fluorescence excitation emission matrices. Talanta 103:361–370

    Article  Google Scholar 

  32. Lozano VA, Ibañez GA, Olivieri AC (2009) A novel second-order standard addition analytical method based on data processing with multidimensional partial least-squares and residual bilinearization. Anal Chim Acta 651:165–172

    Article  CAS  Google Scholar 

  33. Olivieri AC, Faber N (2005) A closed-form expression for computing the sensitivity in second-order bilinear calibration. J Chemom 19:583–592

    Article  CAS  Google Scholar 

  34. Boque R, Larrechi MS, Rius FX (1999) Multivariate detection limits with fixed probabilities of error. Chemom Intell Lab Syst 45:397–408

    Article  CAS  Google Scholar 

  35. Weißhaar R (2002) Rapid determination of heavy polycyclic aromatic hydrocarbons in edible fats and oils. Eur J Lipid Sci Technol 104:282–285

    Article  Google Scholar 

  36. Karthikeyan S, Balasubramanian R, Wei See S (2006) Optimization and validation of a low temperature microwave-assisted extraction method for analysis of polycyclic aromatic hydrocarbons in airborne particulate matter. Talanta 69:79–86

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of Fondecyt (project 1110114).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edwar Fuentes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vásquez, V., Báez, M.E., Bravo, M. et al. Determination of heavy polycyclic aromatic hydrocarbons of concern in edible oils via excitation–emission fluorescence spectroscopy on nylon membranes coupled to unfolded partial least-squares/residual bilinearization. Anal Bioanal Chem 405, 7497–7507 (2013). https://doi.org/10.1007/s00216-013-7201-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-7201-x

Keywords

Navigation