Skip to main content
Log in

Time-resolved fluorescence microscopy for quantitative Ca2+ imaging in living cells

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Calcium (Ca2+) is a ubiquitous intracellular second messenger and involved in a plethora of cellular processes. Thus, quantification of the intracellular Ca2+ concentration ([Ca2+]i) and of its dynamics is required for a comprehensive understanding of physiological processes and potential dysfunctions. A powerful approach for studying [Ca2+]i is the use of fluorescent Ca2+ indicators. In addition to the fluorescence intensity as a common recording parameter, the fluorescence lifetime imaging microscopy (FLIM) technique provides access to the fluorescence decay time of the indicator dye. The nanosecond lifetime is mostly independent of variations in dye concentration, allowing more reliable quantification of ion concentrations in biological preparations. In this study, the feasibility of the fluorescent Ca2+ indicator Oregon Green Bapta-1 (OGB-1) for two-photon fluorescence lifetime imaging microscopy (2P-FLIM) was evaluated. In aqueous solution, OGB-1 displayed a Ca2+-dependent biexponential fluorescence decay behaviour, indicating the presence of a Ca2+-free and Ca2+-bound dye form. After sufficient dye loading into living cells, an in situ calibration procedure has also unravelled the Ca2+-free and Ca2+-bound dye forms from a global biexponential fluorescence decay analysis, although the dye's Ca2+ sensitivity is reduced. Nevertheless, quantitative [Ca2+]i recordings and its stimulus-induced changes in salivary gland cells could be performed successfully. These results suggest that OGB-1 is suitable for 2P-FLIM measurements, which can gain access to cellular physiology.

Procedure of quantitative Ca2+ recordings in cockroach salivary gland cells using time-resolved fluorescence measurements with the Ca2+-sensor OGB-1

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Berridge MJ (2009) Inositol trisphosphate and calcium signalling mechanisms. Biochim Biophys Acta 1793:933–940

    Article  CAS  Google Scholar 

  2. Paredes RM, Etzler JC, Watts LT, Zheng W, Lechleiter JD (2008) Chemical calcium indicators. Methods 46:143–151

    Article  CAS  Google Scholar 

  3. Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450

    CAS  Google Scholar 

  4. Borst JW, Visser AJWG (2010) Fluorescence lifetime imaging microscopy in life sciences. Meas Sci Technol 21:102002

    Article  Google Scholar 

  5. Lakowicz JR, Szmacinski H, Johnson ML (1992) Calcium imaging using fluorescence lifetime and long-wavelength probes. J Fluoresc 2:47–62

    Article  CAS  Google Scholar 

  6. Lakowicz JR, Szmacinski H, Nowaczyk K, Lederer WJ, Kirby MS, Johnson ML (1994) Fluorescence lifetime imaging of intracellular calcium in COS cells using Quin-2. Cell Calcium 15:7–27

    Article  CAS  Google Scholar 

  7. Wilms CD, Schmidt H, Eilers J (2006) Quantitative two-photon Ca2+ imaging via fluorescence lifetime analysis. Cell Calcium 40:73–79

    Article  CAS  Google Scholar 

  8. Gersbach M, Boiko DL, Niclass C, Petersen CCH, Charbon E (2009) Fast-fluorescence dynamics in nonratiometric calcium indicators. Opt Lett 34:362–364

    Article  CAS  Google Scholar 

  9. Lahn M, Dosche C, Hille C (2011) Two-photon microscopy and fluorescence lifetime imaging reveal stimulus-induced intracellular Na+ and Cl changes in cockroach salivary acinar cells. Am J Physiol Cell Physiol 300:1323–1336

    Article  Google Scholar 

  10. Ashby MC, Tepikin AV (2002) Polarized calcium and calmodulin signaling in secretory epithelia. Physiol Rev 82:701–734

    CAS  Google Scholar 

  11. Tsien R, Pozzan T (1989) Measurement of cytosolic free Ca2+ with Quin2. Methods Enzymol 172:230–262

    Article  CAS  Google Scholar 

  12. Thomas D, Tovey SC, Collins TJ, Bootman MD, Berridge MJ, Lipp P (2000) A comparison of fluorescent Ca2+ indicator properties and their use in measuring elementary and global Ca2+ signals. Cell Calcium 28:213–223

    Article  CAS  Google Scholar 

  13. Rumi M, Ehrlich JE, Heikal AA, Perry JW, Barlow S, Hu ZY, McCord-Maughon D, Parker TC, Röckel H, Thayumanavan S, Marder SR, Beljonne D, Brédas JL (2000) Structure–property relationship for two-photon absorbing chromophores: bis-donor diphenylpolyene and bis(styryl)benzene derivates. J Am Chem Soc 122:9500–9510

    Article  CAS  Google Scholar 

  14. Makarov NS, Drobizhev M, Rebane A (2008) Two-photon standards in the 550–1600 nm excitation wavelength range. Opt Express 16:4029–4047

    Article  CAS  Google Scholar 

  15. Sjöback R, Nygren J, Kubista M (1995) Absorption and fluorescence properties of fluorescein. Spectrochim Acta A Mol Biomol Spectrosc 51:L7–L21

    Article  Google Scholar 

  16. Rech I, Labanca I, Ghioni M, Cova S (2006) Modified single photon counting modules for optimal timing performance. Rev Sci Instrum 77:033104

    Article  Google Scholar 

  17. Luchowski R, Szabelski M, Sarkar P, Apicella E, Midde K, Raut S, Borejdo J, Gryczynski Z, Gryczynski I (2010) Fluorescence instrument response standards in two-photon time-resolved spectroscopy. Appl Spectrosc 64:918–922

    Article  CAS  Google Scholar 

  18. Kim HM, Kim BR, Hong JH, Park JS, Lee KJ, Cho BR (2007) A two-photon fluorescent probe for calcium waves in living tissue. Angew Chem Int Ed 46:7445–7448

    Article  CAS  Google Scholar 

  19. Diaspro A, Bianchini P, Vicidomini G, Faretta M, Ramoino P, Usai C (2006) Multi-photon excitation microscopy. Biomed Eng Online 5:36

    Article  Google Scholar 

  20. Xu C, Williams RM, Zipfel W, Webb WW (1996) Multiphoton excitation cross-sections of molecular fluorophores. Bioimaging 4:198–207

    Article  CAS  Google Scholar 

  21. Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science 248:73–76

    Article  CAS  Google Scholar 

  22. Maravall M, Mainen ZF, Sabatini BL, Svoboda K (2000) Estimating intracellular calcium concentrations and buffering without wavelength ratioing. Biophys J 78:2655–2667

    Article  CAS  Google Scholar 

  23. Kuchibhotla KV, Lattarulo CR, Hyman BT, Bacskai BJ (2009) Synchronous hyperactivity and intracellular calcium waves in astrocytes in Alzheimer mice. Science 323:1211–1215

    Article  CAS  Google Scholar 

  24. Schmidt H, Stiefel KM, Racay P, Schwaller B, Eilers J (2003) Mutational analysis of dendritic Ca2+ kinetics in rodent Purkinje cells: role of parvalbumin and calbindin D28k. J Physiol 551:13–32

    Article  CAS  Google Scholar 

  25. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, New York

    Book  Google Scholar 

  26. Agronskaia AV, Tertoolen L, Gerritsen HC (2004) Fast fluorescence lifetime imaging of calcium in living cells. J Biomed Opt 9:1230–1237

    Article  CAS  Google Scholar 

  27. Hille C, Berg M, Bressel L, Munzke D, Primus P, Löhmannsröben HG, Dosche C (2008) Time-domain fluorescence lifetime imaging for intracellular pH sensing in living tissues. Anal Bioanal Chem 391:1871–1879

    Article  CAS  Google Scholar 

  28. Takahashi A, Camacho P, Lechleiter JD, Herman B (1999) Measurement of intracellular calcium. Physiol Rev 79:1089–1125

    CAS  Google Scholar 

  29. Xu T, Yang W, Huo XL, Song T (2004) Abnormal spectra alteration observed in Triton calibration method for measuring [Ca2+]i with fluorescence indicator, fura-2. J Biochem Biophys Methods 58:219–226

    Article  CAS  Google Scholar 

  30. Hirshfield KM, Toptygin D, Packard BS, Brand L (1993) Dynamic fluorescence measurements of two-state systems: application to calcium-chelating probes. Anal Biochem 209:209–218

    Article  CAS  Google Scholar 

  31. Szmacinski H, Lakowicz JR (1995) Fluorescence lifetime-based sensing and imaging. Sens Actuator B-Chem 29:16–24

    Article  CAS  Google Scholar 

  32. Lang I, Walz B (1999) Dopamine stimulates salivary duct cells in the cockroach Periplaneta americana. J Exp Biol 202:729–738

    CAS  Google Scholar 

  33. Hille C, Walz B (2006) Dopamine-induced graded intracellular Ca2+ elevation via the Na+–Ca2+ exchanger operating in the Ca2+-entry mode in cockroach salivary ducts. Cell Calcium 39:305–311

    Article  CAS  Google Scholar 

  34. Just F, Walz B (1994) Salivary glands of the cockroach, Periplaneta americana: new data from light and electron microscopy. J Morphol 220:35–46

    Article  CAS  Google Scholar 

  35. Rotte C (2009) Die neuronale Kontrolle der Speicheldrüsen der Schabe Periplaneta americana. PhD thesis, University of Potsdam

  36. Gray DC, House CR (1982) The influence of calcium on the control of fluid secretion in the cockroach salivary gland. Q J Exp Physiol 67:639–654

    CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Prof Dr B. Walz (Animal Physiology, University of Potsdam) for providing cockroaches. This work was funded by the German Research Foundation (1850 / 30001355, DO 1268/3-1) and the Federal Ministry of Education and Research (03IP517, 03IPT517Y).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten Hille.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 812 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sagolla, K., Löhmannsröben, HG. & Hille, C. Time-resolved fluorescence microscopy for quantitative Ca2+ imaging in living cells. Anal Bioanal Chem 405, 8525–8537 (2013). https://doi.org/10.1007/s00216-013-7290-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-7290-6

Keywords

Navigation