Skip to main content

Advertisement

Log in

Exploiting in vitro and in vivo bioluminescence for the implementation of the three Rs principle (replacement, reduction, and refinement) in drug discovery

  • Trends
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Bioluminescence-based analytical tools are suitable for high-throughput and high-content screening assays, finding widespread application in several fields related to the drug discovery process. Cell-based bioluminescence assays, because of their peculiar advantages of predictability, possibility of automation, multiplexing, and miniaturization, seem the most appealing tool for the high demands of the early stages of drug screening. Reporter gene technology and the bioluminescence resonance energy transfer principle are widely used, and receptor binding studies of new agonists/antagonists for a variety of human receptors expressed in different cell lines can be performed. Moreover, bioluminescence can be used for in vitro and in vivo real-time monitoring of pathophysiological processes within living cells and small animals. New luciferases and substrates have recently arrived on the market, further expanding the spectrum of applications. A new generation of probes are also emerging that promise to revolutionize the preclinical imaging market. This formidable toolbox is demonstrated to facilitate the implementation of the three Rs principle in the early drug discovery process, in compliance with ethical and responsible research to reduce cost and improve the reliability and predictability of results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Timmins GS, Jackson SK, Swartz HM (2001) The evolution of bioluminescent oxygen consumption as an ancient oxygen detoxification mechanism. J Mol Evol 52:321–332

    CAS  Google Scholar 

  2. Ow DW, DE Wet JR, Helinski DR, Howell SH, Wood KV, Deluca M (1986) Transient and stable expression of the firefly luciferase gene in plant cells and transgenic plants. Science 234:856–859

    Article  CAS  Google Scholar 

  3. Russell WMS, Burch RL (1959) The principles of humane experimental technique. Methuen, London

    Google Scholar 

  4. Schechtman LM (2002) Implementation of the 3Rs (refinement, reduction, and replacement): validation and regulatory acceptance considerations for alternative toxicological test methods. ILAR J 43:S85–S94

    CAS  Google Scholar 

  5. Michelini E, Cevenini L, Calabretta MM, Spinozzi S, Camborata C, Roda A (2013) Field-deployable whole-cell bioluminescent biosensors: so near and yet so far. Anal Bioanal Chem 405:6155–6163

    Article  CAS  Google Scholar 

  6. Ando Y, Niwa K, Yamada N, Enomot T, Irie T, Kubota H, Ohmiya Y, Akiyama H (2008) Firefly bioluminescence quantum yield and colour change by pH-sensitive green emission. Nat Photonics 2:44–47

    Article  CAS  Google Scholar 

  7. Leclerc GM, Boockfor FR, Faught WJ, Frawley LS (2000) Development of a destabilized firefly luciferase enzyme for measurement of gene expression. Biotechniques 29:590–591

    CAS  Google Scholar 

  8. Woo J, Howell MH, von Arnim AG (2008) Structure-function studies on the active site of the coelenterazine-dependent luciferase from Renilla. Protein Sci 17:725–735

    Article  CAS  Google Scholar 

  9. Nakatsu T, Ichiyama S, Hiratake J, Saldanha A, Kobashi N, Sakata K, Kato H (2006) Structural basis for the spectral difference in luciferase bioluminescence. Nature 440:372–376

    Article  CAS  Google Scholar 

  10. Navizet I, Liu YJ, Ferré N, Roca-Sanjuán D, Lindh R (2011) The chemistry of bioluminescence: an analysis of chemical functionalities. ChemPhysChem 12:3064–3076

    Article  CAS  Google Scholar 

  11. Vieira J, Pinto da Silva L, Esteves da Silva JC (2012) Advances in the knowledge of light emission by firefly luciferin and oxyluciferin. J Photochem Photobiol B 117:33–39

    Article  CAS  Google Scholar 

  12. Branchini BR, Ablamsky DM, Davis AL, Southworth TL, Butler B, Fan F, Jathoul AP, Pule MA (2010) Red-emitting luciferases for bioluminescence reporter and imaging applications. Anal Biochem 396:290–297

    Article  CAS  Google Scholar 

  13. Roda A, Mezzanotte L, Aldini R, Michelini E, Cevenini L (2010) A new gastric-emptying mouse model based on in vivo non-invasive bioluminescence imaging. Neurogastroenterol Motil 22:1117–e288

    Article  CAS  Google Scholar 

  14. Michelini E, Donati M, Aldini R, Cevenini L, Mezzanotte L, Nardini P, Foschi C, Zvi IB, Cevenini M, Montagnani M, Marangoni A, Roda A, Cevenini R (2012) Dual-color bioluminescent assay using infected HepG2 cells sheds new light on Chlamydia pneumoniae and human cytomegalovirus effects on human cholesterol 7α-hydroxylase (CYP7A1) transcription. Anal Biochem 430:92–96

    Article  CAS  Google Scholar 

  15. Didiot MC, Serafini S, Pfeifer MJ, King FJ, Parker CN (2011) Multiplexed reporter gene assays: monitoring the cell viability and the compound kinetics on luciferase activity. J Biomol Screen 16:786–793

    Article  CAS  Google Scholar 

  16. Hosseinkhani S (2011) Molecular enigma of multicolor bioluminescence of firefly luciferase. Cell Mol Life Sci 68:1167–1182

    Article  CAS  Google Scholar 

  17. da Silva LP, da Silva JC (2011) Study on the effects of intermolecular interactions on firefly multicolor bioluminescence. ChemPhysChem 12:3002–3008

    Article  Google Scholar 

  18. Wang Y, Akiyama H, Terakado K, Nakatsu T (2013) Impact of site-directed mutant luciferase on quantitative green and orange/red emission intensities in firefly bioluminescence. Sci Rep 3:2490

    Google Scholar 

  19. Alam R, Fontaine DM, Branchini BR, Maye MM (2012) Designing quantum rods for optimized energy transfer with firefly luciferase enzymes. Nano Lett 12:3251–3256

    Article  CAS  Google Scholar 

  20. Xiong L, Shuhendler AJ, Rao J (2012) Self-luminescing BRET-FRET near-infrared dots for in vivo lymph-node mapping and tumour imaging. Nat Commun 3:1193

    Article  Google Scholar 

  21. Conley NR, Dragulescu-Andrasi A, Rao J, Moerner WE (2012) A selenium analogue of firefly D-luciferin with red-shifted bioluminescence emission. Angew Chem Int Ed 51:3350–3353

    Article  CAS  Google Scholar 

  22. Viviani VR, Arnoldi FG, Venkatesh B, Neto AJ, Ogawa FG, Oehlmeyer AT, Ohmiya Y (2006) Active-site properties of Phrixotrix railroad worm green and red bioluminescence-eliciting luciferases. J Biochem 140:467–474

    Article  CAS  Google Scholar 

  23. Rowe L, Combs K, Deo S, Ensor C, Daunert S, Qu X (2008) Genetically modified semisynthetic bioluminescent photoprotein variants: simultaneous dual-analyte assay in a single well employing time resolution of decay kinetics. Anal Chem 80:8470–8476

    Article  CAS  Google Scholar 

  24. Natashin PV, Markova SV, Lee J, Vysotski ES, Liu ZJ (2014) Crystal structures of the F88Y obelin mutant before and after bioluminescence provide molecular insight into spectral tuning among hydromedusan photoproteins. FEBS J 281:1432–1445

    Article  CAS  Google Scholar 

  25. Cali JJ, Niles A, Valley MP, O’Brien MA, Riss TL, Shultz J (2008) Bioluminescent assays for ADMET. Expert Opin Drug Metab Toxicol 4:103–120

    Article  CAS  Google Scholar 

  26. Michelini E, Cevenini L, Mezzanotte L, Coppa A, Roda A (2010) Cell-based assays: fuelling drug discovery. Anal Bioanal Chem 398:227–238

    Article  CAS  Google Scholar 

  27. Thorne N, Shen M, Lea WA, Simeonov A, Lovell S, Auld DS, Inglese J (2012) Firefly luciferase in chemical biology: a compendium of inhibitors, mechanistic evaluation of chemotypes, and suggested use as a reporter. Chem Biol 19:1060–1072

    Article  CAS  Google Scholar 

  28. Ho PI, Yue K, Pandey P, Breault L, Harbinski F, McBride AJ, Webb B, Narahari J, Karassina N, Wood KV, Hill A, Auld DS (2013) Reporter enzyme inhibitor study to aid assembly of orthogonal reporter gene assays. ACS Chem Biol 8:1009–1017

    Article  CAS  Google Scholar 

  29. Cheng KC, Inglese J (2012) A coincidence reporter-gene system for high-throughput screening. Nat Methods 9:937

    Article  CAS  Google Scholar 

  30. Nakamura K, Mizutani R, Sanbe A, Enosawa S, Kasahara M, Nakagawa A, Ejiri Y, Murayama N, Miyamoto Y, Torii T, Kusakawa S, Yamauchi J, Fukuda M, Yamazaki H, Tanoue A (2011) Evaluation of drug toxicity with hepatocytes cultured in a micro-space cell culture system. J Biosci Bioeng 111:78–84

    Article  CAS  Google Scholar 

  31. Ramaiahgari SC, den Braver MW, Herpers B, Terpstra V, Commandeur JN, van de Water B, Price LS. Arch Toxicol (2014) A 3D in vitro model of differentiated HepG2 cell spheroids with improved liver-like properties for repeated dose high-throughput toxicity studies. Arch Toxicol 88:1083–1095

    Google Scholar 

  32. Bellis AD, Bernabé BP, Weiss MS, Shin S, Weng S, Broadbelt LJ, Shea LD (2013) Dynamic transcription factor activity profiling in 2D and 3D cell cultures. Biotechnol Bioeng 110:563–572

    Article  CAS  Google Scholar 

  33. Weiss MS, Peñalver Bernabé B, Bellis AD, Broadbelt LJ, Jeruss JS, Shea LD (2010) Dynamic, large-scale profiling of transcription factor activity from live cells in 3D culture. PLoS One 5:e14026

    Article  Google Scholar 

  34. Paguio A, Stecha P, Wood KV, Fan F (2010) Improved dual-luciferase reporter assays for nuclear receptors. Curr Chem Genomics 4:43–49

    Article  CAS  Google Scholar 

  35. Sedlák D, Paguio A, Bartůněk P (2011) Two panels of steroid receptor luciferase reporter cell lines for compound profiling. Comb Chem High Throughput Screen 14:248–266

    Article  Google Scholar 

  36. Cevenini L, Michelini E, D’Elia M, Guardigli M, Roda A (2013) Dual-color bioluminescent bioreporter for forensic analysis: evidence of androgenic and anti-androgenic activity of illicit drugs. Anal Bioanal Chem 405:1035–1045

    Article  CAS  Google Scholar 

  37. Caland F, Miron S, Brie D, Mustin C (2011) A Candecomp/Parafac approach to the estimation of environmental pollutant concentrations using biosensors. In: 2011 I.E. statistical signal processing workshop (SSP), pp 801-804

  38. Heise K, Oppermann H, Meixensberger J, Gebhardt R, Gaunitz F (2013) Dual luciferase assay for secreted luciferases based on Gaussia and NanoLuc. Assay Drug Dev Technol 11:244–252

    Article  CAS  Google Scholar 

  39. Michelini E, Cevenini L, Mezzanotte L, Ablamsky D, Southworth T, Branchini BR, Roda A (2008) Combining intracellular and secreted bioluminescent reporter proteins for multicolor cell-based assays. Photochem Photobiol Sci 7:212–217

    Article  CAS  Google Scholar 

  40. Paulmurugan R, Gambhir SS (2005) Novel fusion protein approach for efficient high-throughput screening of small molecule-mediating protein-protein interactions in cells and living animals. Cancer Res 6516:7413–7420

    Article  Google Scholar 

  41. Dothager RS, Flentie K, Moss B, Pan MH, Kesarwala A, Piwnica-Worms D (2009) Advances in bioluminescence imaging of live animal models. Curr Opin Biotechnol 20:45–53

    Article  CAS  Google Scholar 

  42. Chung E, Yamashita H, Au P, Tannous BA, Fukumura D, Jain RK (2009) Secreted Gaussia luciferase as a biomarker for monitoring tumor progression and treatment response of systemic metastases. PLoS One 4:e8316

    Article  Google Scholar 

  43. Godinat A, Park HM, Miller SC, Cheng K, Hanahan D, Sanman LE, Bogyo M, Yu A, Nikitin GF, Stahl A, Dubikovskaya EA (2013) A biocompatible in vivo ligation reaction and its application for noninvasive bioluminescent imaging of protease activity in living mice. ACS Chem Biol 8:987–999

    Article  CAS  Google Scholar 

  44. Dressler H, Economides K, Favara S, Wu NN, Pang Z, Polites HG (2014) The CRE luc bioluminescence transgenic mouse model for detecting ligand activation of GPCRs. J Biomol Screen 19:232–241

    Article  Google Scholar 

  45. Pei Z, Lan X, Cheng Z, Qin C, Xia X, Yuan H, Ding Z, Zhang Y (2014) Multimodality molecular imaging to monitor transplanted stem cells for the treatment of ischemic heart disease. PLoS One 9:e90543

    Article  Google Scholar 

  46. Behrooz A, Kuo C, Xu H, Rice B (2013) Adaptive row-action inverse solver for fast noise-robust three-dimensional reconstructions in bioluminescence tomography: theory and dual-modality optical/computed tomography in vivo studies. J Biomed Opt 18:76010

    Article  Google Scholar 

  47. Weissleder R, Ntziachristos V (2003) Shedding light onto live molecular targets. Nat Med 9:123–128

    Article  CAS  Google Scholar 

  48. Hasegawa M, Tsukasaki Y, Ohyanagi T, Jin T (2013) Bioluminescence resonance energy transfer coupled near-infrared quantum dots using GST-tagged luciferase for in vivo imaging. Chem Commun 49:228–230

    Article  CAS  Google Scholar 

  49. Kuzyniak W, Adegoke O, Sekhosana K, D’Souza S, Tshangana SC, Hoffmann B, Ermilov EA, Nyokong T, Höpfner M (2014) Synthesis and characterization of quantum dots designed for biomedical use. Int J Pharm 466:382–389

    Article  CAS  Google Scholar 

  50. Dragulescu-Andrasi A, Chan CT, De A, Massoud TF, Gambhir SS (2011) Bioluminescence resonance energy transfer (BRET) imaging of protein-protein interactions within deep tissues of living subjects. Proc Natl Acad Sci U S A 108:12060–12065

    Article  CAS  Google Scholar 

  51. Luker KE, Mihalko LA, Schmidt BT, Lewin SA, Ray P, Shcherbo D, Chudakov DM, Luker GD (2011) In vivo imaging of ligand receptor binding with Gaussia luciferase complementation. Nat Med 18:172–177

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisa Michelini.

Additional information

Published in the topical collection Analytical Bioluminescence and Chemiluminescence with guest editors Elisa Michelini and Mara Mirasoli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Michelini, E., Cevenini, L., Calabretta, M.M. et al. Exploiting in vitro and in vivo bioluminescence for the implementation of the three Rs principle (replacement, reduction, and refinement) in drug discovery. Anal Bioanal Chem 406, 5531–5539 (2014). https://doi.org/10.1007/s00216-014-7925-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-7925-2

Keywords

Navigation