Skip to main content
Log in

Glucose sensors based on electrospun nanofibers: a review

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The worldwide increase in the number of people suffering from diabetes has been the driving force for the development of glucose sensors. The recent past has devised various approaches to formulate glucose sensors using various nanostructure materials. This review presents a combined survey of these various approaches, with emphasis on the current progress in the use of electrospun nanofibers and their composites. Outstanding characteristics of electrospun nanofibers, including high surface area, porosity, flexibility, cost effectiveness, and portable nature, make them a good choice for sensor applications. Particularly, their nature of possessing a high surface area makes them the right fit for large immobilization sites, resulting in increased interaction with analytes. Thus, these electrospun nanofiber-based glucose sensors present a number of advantages, including increased life time, which is greatly needed for practical applications. Taking all these facts into consideration, we have highlighted the latest significant developments in the field of glucose sensors across diverse approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Lin Y, Yu P, Hao J, Wang Y, Ohsaka T, Mao L (2014) Continuous and simultaneous electrochemical measurements of glucose, lactate, and ascorbate in rat brain following brain ischemia. Anal Chem 86:3895–3901

    Article  CAS  Google Scholar 

  2. Odaci D, Gacal BN, Gacal B, Timur S, Yagci Y (2009) Fluorescence sensing of glucose using glucose oxidase modified by PVA-pyrene prepared via “click” chemistry. Biomacromolecules 10:2928–2934

    Article  CAS  Google Scholar 

  3. Kropff J, Bruttomesso D, Doll W, Farret A, Galasso S, Luijf YM, Mader JK, Place J, Boscari F, Pieber TR, Renard E, DeVries JH (2015) Accuracy of two continuous glucose monitoring systems: to-head comparison under clinical research centre and daily life. Diabetes Obes Metab 17:343–349

    Article  CAS  Google Scholar 

  4. Benassi K, Drobny J, Aye T (2013) Real-time continuous glucose monitoring systems in the classroom/school environment. Diabetes Technol Ther 15:409–412

    Article  Google Scholar 

  5. Diagnosing Diabetes and Learning About Prediabetes. American Diabetes Association. Available at: http://www.diabetes.org/diabetes-basics/diagnosis/?loc=db-slabnav. Accessed 12 September 2015

  6. International Diabetic Federation (2013) Annual report. 1–37. Available at: http://www.idf.org/sites/default/files/attachments/IDF-AR2013-final-rv.pdf. Accessed 12 September 2015

  7. Clark LC Jr, Lyons C (1962) Electrode systems for continuous monitoring in cardiovascular surgery. Ann NY Acad Sci 102:29–45

    Article  CAS  Google Scholar 

  8. Updike SJ, Hicks GP (1967) The enzyme electrode. Nature 214:986–988

    Article  CAS  Google Scholar 

  9. McNichols RJ, Coté GL (2000) Optical glucose sensing in biological fluids: an overview. J Biomed Opt 5:5–16

    Article  CAS  Google Scholar 

  10. Endo T, Ikeda R, Yanagida Y, Hatsuzawa T (2008) Stimuli-responsive hydrogel-silver nanoparticles composite for development of localized surface plasmon resonance-based optical biosensor. Anal Chim Acta 611:205–211

    Article  CAS  Google Scholar 

  11. Steiner M-S, Duerkop A, Wolfbeis OS (2011) Optical methods for sensing glucose. Chem Soc Rev 40:4805–4839

    Article  CAS  Google Scholar 

  12. Barone PW, Strano MS (2009) Single walled carbon nanotubes as reporters for the optical detection of glucose. J Diabetes Sci Technol 3:242–252

    Article  Google Scholar 

  13. Zhou YG, Yang S, Qian QY, Xia XH (2009) Gold nanoparticles integrated in a nanotube array for electrochemical detection of glucose. Electrochem Commun 11:216–219

    Article  CAS  Google Scholar 

  14. Wang J, Thomas DF, Chen A (2008) Nonenzymatic electrochemical glucose sensor based on nanoporous PtPb networks. Anal Chem 80:997–1004

    Article  CAS  Google Scholar 

  15. Su C, Zhang C, Lu G, Ma C (2010) Nonenzymatic electrochemical glucose sensor based on Pt nanoparticles/mesoporous carbon matrix. Electroanalysis 22:1901–1905

    Article  CAS  Google Scholar 

  16. Li H, Liu S, Dai Z, Bao J, Yang X (2009) Applications of nanomaterials in electrochemical enzyme biosensors. Sensors 9:8547–8561

    Article  CAS  Google Scholar 

  17. du Toit H, Di Lorenzo M (2014) Glucose oxidase directly immobilized onto highly porous gold electrodes for sensing and fuel cell applications. Electrochim Acta 138:86–92

    Article  CAS  Google Scholar 

  18. Wang Y, Liu L, Li M, Xu S, Gao F (2011) Multifunctional carbon nanotubes for direct electrochemistry of glucose oxidase and glucose bioassay. Biosens Bioelectron 30:107111

    Google Scholar 

  19. Cui HF, Zhang K, Zhang YF, Sun YL, Wang J, Zhang WD, Luong JHT (2013) Immobilization of glucose oxidase into a nanoporous TiO2 film layered on metallophthalocyanine modified vertically-aligned carbon nanotubes for efficient direct electron transfer. Biosens Bioelectron 46:113–118

    Article  CAS  Google Scholar 

  20. Si P, Huang Y, Wang T, Ma J (2013) Nanomaterials for electrochemical nonenzymatic glucose biosensors. RSC Adv 3:3487–3502

    Article  CAS  Google Scholar 

  21. Pradhan D, Niroui F, Leung KT (2010) High-performance, flexible enzymatic glucose biosensor based on ZnO nanowires supported on a gold-coated polyester substrate. ACS Appl Mater Interfaces 2:2409–2412

    Article  CAS  Google Scholar 

  22. Yang X, Bai J, Wang Y, Jiang X, He X (2012) Hydrogen peroxide and glucose biosensor based on silver nanowires synthesized by polyol process. Analyst 137:4362–4367

    Article  CAS  Google Scholar 

  23. Cherevko S, Chung CH (2009) Gold nanowire array electrode for nonenzymatic voltammetric and amperometric glucose detection. Sensors Actuators B Chem 142:216–223

    Article  CAS  Google Scholar 

  24. Tarlani A, Fallah M, Lotfi B, Khazraei A, Golsanamlou S, Muzart J, Mirza-Aghayan M (2015) New ZnO nanostructures as nonenzymatic glucose biosensors. Biosens Bioelectron 67:601–607

    Article  CAS  Google Scholar 

  25. Claussen JC, Kim SS, Haque AU, Artiles MS, Porterfield DM, Fisher TS (2010) Electrochemical glucose biosensor of platinum nanospheres connected by carbon nanotubes. J Diabetes Sci Technol 4:312–319

    Article  Google Scholar 

  26. Alwarappan S, Liu C, Kumar A, Li CZ (2010) Enzyme-doped graphene nanosheets for enhanced glucose biosensing. J Phys Chem C 114:12920–12924

    Article  CAS  Google Scholar 

  27. Ding Y, Wang Y, Su L, Bellagamba M, Zhang H, Lei Y (2010) Electrospun Co3O4 nanofibers for sensitive and selective glucose detection. Biosens Bioelectron 26:542–548

    Article  CAS  Google Scholar 

  28. Li Z, Xin Y, Zhang Z, Wu H, Wang P (2015) Rational design of binder-free noble metal/metal oxide arrays with nanocauliflower structure for wide linear range nonenzymatic glucose detection. Sci Rep 5:10617

    Article  CAS  Google Scholar 

  29. Huang S, Ding Y, Liu Y, Su L, Filosa R, Lei Y (2011) Glucose biosensor using glucose oxidase and electrospun Mn2O3-Ag nanofibers. Electroanalysis 23:1912–1920

    Article  CAS  Google Scholar 

  30. Scampicchio M, Arecchi A, Lawrence NS, Mannino S (2010) Nylon nanofibrous membrane for mediated glucose biosensing. Sensors Actuators B Chem 145:394–397

    Article  CAS  Google Scholar 

  31. Umar A, Rahman MM, Al-Hajry A, Hahn YB (2009) Enzymatic glucose biosensor based on flower-shaped copper oxide nanostructures composed of thin nanosheets. Electrochem Commun 11:278–281

    Article  CAS  Google Scholar 

  32. Wang X, Hu C, Liu H, Du G, He X, Xi Y (2010) Synthesis of CuO nanostructures and their application for nonenzymatic glucose sensing. Sensors Actuators B Chem 144:220–225

    Article  CAS  Google Scholar 

  33. Zhang Y, Wang Y, Jia J, Wang J (2012) Nonenzymatic glucose sensor based on graphene oxide and electrospun NiO nanofibers. Sensors Actuators B Chem 171(172):580–587

    Article  CAS  Google Scholar 

  34. Zhang Y, Liu S, Li Y, Deng D, Si X, Ding Y, He H, Luo L, Wang Z (2015) Electrospun graphene decorated MnCo2O4 composite nanofibers for glucose biosensing. Biosens Bioelectron 66:308–315

    Article  CAS  Google Scholar 

  35. Wang ZG, Wang Y, Xu H, Li G, Xu ZK (2009) Carbon nanotube-filled nanofibrous membranes electrospun from poly(acrylonitrile-co-acrylic acid) for glucose biosensor. J Phys Chem C 113:2955–2960

    Article  CAS  Google Scholar 

  36. Manesh KM, Kim HT, Santhosh P, Gopalan AI, Lee KP (2008) A novel glucose biosensor based on immobilization of glucose oxidase into multiwall carbon nanotubes-polyelectrolyte-loaded electrospun nanofibrous membrane. Biosens Bioelectron 23:771–779

    Article  CAS  Google Scholar 

  37. Bai Y, Yang H, Yang W, Li Y, Sun C (2007) Gold nanoparticles-mesoporous silica composite used as an enzyme immobilization matrix for amperometric glucose biosensor construction. Sensors Actuators B Chem 124:179–186

    Article  CAS  Google Scholar 

  38. Zhao L, Wu G, Cai Z, Zhao T, Yao Q, Chen X (2015) Ultrasensitive nonenzymatic glucose sensing at near-neutral pH values via anodic stripping voltammetry using a glassy carbon electrode modified with Pt3Pd nanoparticles and reduced graphene oxide. Microchim Acta 182:2055–2060

    Article  CAS  Google Scholar 

  39. Solanki PR, Kaushik A, Agrawal VV, Malhotra BD (2011) Nanostructured metal oxide-based biosensors. NPG Asia Mater 3:17–24

    Article  Google Scholar 

  40. Cash KJ, Clark HA (2010) Nanosensors and nanomaterials for monitoring glucose in diabetes. Trends Mol Med 16:584–593

    Article  CAS  Google Scholar 

  41. Nitinaivinij K, Parnklang T, Thammacharoen C, Ekgasita S, Wongravee K (2014) Colorimetric determination of hydrogen peroxide by morphological decomposition of silver nanoprisms coupled with chromaticity analysis. Anal Methods 6:9816–9824

    Article  CAS  Google Scholar 

  42. Rahman MM, Ahammad AJS, Jin JH, Ahn SJ, Lee JJ (2010) A comprehensive review of glucose biosensors based on nanostructured metal-oxides. Sensors 10:4855–4886

    Article  CAS  Google Scholar 

  43. Senthamizhan A, Celebioglu A, Uyar T (2015) Ultrafast on-site selective visual detection of TNT at sub-ppt level using fluorescent gold cluster incorporated single nanofiber. Chem Commun 51:5590–5593

    Article  CAS  Google Scholar 

  44. Senthamizhan A, Celebioglu A, Uyar T (2014) Flexible and highly stable electrospun nanofibrous membrane incorporating gold nanoclusters as an efficient probe for visual colorimetric detection of Hg(II). J Mater Chem A 2:12717–12723

    Article  CAS  Google Scholar 

  45. Nakabayashi Y, Hirosaki Y, Yamauchi O (2006) Dipolar ruthenium–ammine complexes with 4,4'-bipyridinium ions accessible for both amperometric and colorimetric glucose sensors. Inorg Chem Commun 9:935–938

    Article  CAS  Google Scholar 

  46. Zhou B, Wang J, Guo Z, Tan H, Zhu X (2006) A simple colorimetric method for determination of hydrogen peroxide in plant tissues. Plant Growth Regul 49:113–118

    Article  CAS  Google Scholar 

  47. Chigome S, Torto N (2011) A review of opportunities for electrospun nanofibers in analytical chemistry. Anal Chim Acta 706:25–36

    Article  CAS  Google Scholar 

  48. Ondigo DA, Tshentu ZR, Torto N (2013) Electrospun nanofibe-based colorimetric probe for rapid detection of Fe2+ in water. Anal Chim Acta 804:228–234

    Article  CAS  Google Scholar 

  49. Mudabuka B, Ondigo D, Degni S, Vilakazi S, Torto N (2014) A colorimetric probe for ascorbic acid based on copper-gold nanoparticles in electrospun nylon. Microchim Acta 181:395–401

    Article  CAS  Google Scholar 

  50. Wang X, Si Y, Wang J, Ding B, Yu J, Al-Deyab SS (2012) A facile and highly sensitive colorimetric sensor for the detection of formaldehyde based on electro-spinning/netting nano-fiber/nets. Sensors Actuators B Chem 163:186–193

    Article  CAS  Google Scholar 

  51. Gao F, Luo F, Chen X, Yao W, Yin J, Yao Z, Wang L (2009) A novel nonenzymatic fluorescent sensor for glucose based on silica nanoparticles doped with europium coordination compound. Talanta 80:202–206

    Article  CAS  Google Scholar 

  52. Kochubey VI, Volkova EK, Konyukhova JG (2014) Fluorescent ZnCdS nanoparticles for glucose sensing. J Biomed Opt 19:011020

    Article  CAS  Google Scholar 

  53. Li J, Li Y, Shahzad SA, Chen J, Chen Y, Wang Y, Yang M, Yu C (2015) Fluorescence turn-on detection of glucose via the Ag nanoparticle mediated release of a perylene probe. Chem Commun 51:6354–6356

    Article  CAS  Google Scholar 

  54. Ding B, Yu J (2014) Electrospun nanofibers for energy and environmental applications. Springer, Berlin, Germany

    Book  Google Scholar 

  55. Senthamizhan A, Celebioglu A, Bayir S, Gorur M, Doganci E, Yilmaz F, Uyar T (2015) Highly fluorescent pyrene-functional polystyrene copolymer nanofibers for enhanced sensing performance of TNT. ACS Appl Mater Interfaces. doi:10.1021/acsami.5b07184

    Google Scholar 

  56. Thavasi V, Singh G, Ramakrishna S (2008) Electrospun nanofibers in energy and environmental applications. Energy Environ Sci 1:205–221

    Article  CAS  Google Scholar 

  57. Fang J, Niu H, Lin T, Wang X (2008) Applications of electrospun nanofibers. Chin Sci Bull 53:2265–2286

    Article  CAS  Google Scholar 

  58. Celebioglu A, Umu OC, Tekinay T, Uyar T (2013) Antibacterial electrospun nanofibers from triclosan/cyclodextrin inclusion complexes. Colloids Surf B: Biointerfaces 116:612–619

    Article  CAS  Google Scholar 

  59. Uyar T, Havelund R, Nur Y, Balan A, Hacaloglu J, Toppare L, Besenbacher F, Kingshott P (2010) Cyclodextrin functionalized poly(methyl methacrylate) (PMMA) electrospun nanofibers for organic vapors waste treatment. J Membr Sci 365:409–417

    Article  CAS  Google Scholar 

  60. Anitha S, Brabu B, Rajesh KP, Natarajan TS (2013) Fabrication of UV sensor based on electrospun composite fibers. Mater Lett 92:417–420

    Article  CAS  Google Scholar 

  61. Anitha S, Brabu B, Thiruvadigal DJ, Gopalakrishnan C, Natarajan TS (2013) Optical, bactericidal, and water repellent properties of electrospun nano-composite membranes of cellulose acetate and ZnO. Carbohydr Polym 97:856–863

    Article  CAS  Google Scholar 

  62. Anitha S, Brabu B, Thiruvadigal DJ, Gopalakrishnan C, Natarajan TS (2012) Preparation of free-standing electrospun composite ZnO membranefor antibacterial applications. Adv Sci Lett 5:468–477

    Article  CAS  Google Scholar 

  63. Senthamizhan A, Uyar T (2015) In: Macagnano A, Zampetti E, Kny E (eds) Electrospinning for high performance sensors, 1st edn. Springer International Publishing, Switzerland

    Google Scholar 

  64. Hu X, Liu S, Zhou G, Huang Y, Xie Z, Jing X (2014) Electrospinning of polymeric nanofibers for drug delivery applications. J Control Release 185:12–21

    Article  CAS  Google Scholar 

  65. Dong Z, Kennedy SJ, Wu Y (2011) Electrospinning materials for energy-related applications and devices. J Power Sources 196:4886–4904

    Article  CAS  Google Scholar 

  66. Senthamizhan A, Celebioglu A, Balusamy B, Uyar T (2015) Immobilization of gold nanoclusters inside porous electrospun fibers for selective detection of Cu(II): a strategic approach to shielding pristine performance. Sci Rep 5:15608

    Article  CAS  Google Scholar 

  67. Wang ZG, Wan LS, Liu ZM, Huang XJ, Xu ZK (2009) Enzyme immobilization on electrospun polymer nanofibers: an overview. J Mol Catal B Enzym 56:189–195

    Article  CAS  Google Scholar 

  68. Wang J (2008) Electrochemical glucose biosensors. Chem Rev 108:814–825

    Article  CAS  Google Scholar 

  69. Heller A, Feldman B (2008) Electrochemical glucose sensors and their applications in diabetes management. Chem Rev 108:2482–2505

  70. Song C, Pehrsson PE, Zhao W (2006) Optical enzymatic detection of glucose based on hydrogen peroxide-sensitive HiPco carbon nanotubes. J Mater Res 21:2817–2823

    Article  CAS  Google Scholar 

  71. Cheng Z, Wang E, Yang X (2001) Capacitive detection of glucose using molecularly imprinted polymers. Biosens Bioelectron 16:179–185

    Article  CAS  Google Scholar 

  72. Nakamura H, Mogi Y, Akimoto T, Naemura K, Kato T, Yano K, Karube I (2008) An enzyme-chromogenic surface plasmon resonance biosensor probe for hydrogen peroxide determination using a modified Trinder's reagent. Biosens Bioelectron 24:455–460

    Article  CAS  Google Scholar 

  73. Sophia J, Muralidharan G (2015) Gold nanoparticles for sensitive detection of hydrogen peroxide: a simple nonenzymatic approach. J Appl Electrochem 45:963–971

    Article  CAS  Google Scholar 

  74. Tura A, Sbrignadello S, Cianciavicchia D, Pacini G, Ravazzani P (2010) A low frequency electromagnetic sensor for indirect measurement of glucose concentration: in vitro experiments in different conductive solutions. Sensors 10:5346–5358

    Article  CAS  Google Scholar 

  75. Gourzi M, Rouane A, Guelaz R, Alavi MS, McHugh MB, Nadi M, Roth P (2005) Noninvasive glycaemia blood measurements by electromagnetic sensor: study in static and dynamic blood circulation. J Med Eng Technol 29:22–26

    Article  CAS  Google Scholar 

  76. Wilson R, Turner APF (1992) Glucose oxidase: an ideal enzyme. Biosens Bioelectron 7:165–185

    Article  CAS  Google Scholar 

  77. Al-Halhouli A, Demming S, Alahmad L, LIobera A, Büttgenbach S (2014) An in-line photonic biosensor for monitoring of glucose concentrations. Sensors 14:15749–15759

    Article  CAS  Google Scholar 

  78. Park S, Boo H, Chung TD (2006) Electrochemical nonenzymatic glucose sensors. Anal Chim Acta 556:46–57

    Article  CAS  Google Scholar 

  79. Clark L Jr (1970) US Patent 33,539,455

  80. Chen C, Xie Q, Yang D, Xiao H, Fu Y, Tan Y, Yao S (2013) Recent advances in electrochemical glucose biosensors: a review. RSC Adv 3:4473–4491

    Article  CAS  Google Scholar 

  81. Saleh FS, Mao L, Ohsaka T (2012) A promising dehydrogenase-based bioanode for a glucose biosensor and glucose/O2 biofuel cell. Analyst 137:2233–2238

    Article  CAS  Google Scholar 

  82. Yehezkeli O, Tel-Vered R, Raichlin S, Willner I (2011) Nano-engineered flavin-dependent glucose dehydrogenase/gold nanoparticle-modified electrodes for glucose sensing and biofuel cell applications. ACS Nano 5:2385–2391

    Article  CAS  Google Scholar 

  83. Zayats M, Katz E, Baron R, Willner I (2005) Reconstitution of apo-glucose dehydrogenase on pyrroloquinoline quinone-functionalized Au nanoparticles yields an electrically contacted biocatalyst. J Am Chem Soc 127:12400–12406

    Article  CAS  Google Scholar 

  84. Zafar MN, Wang X, Sygmund C, Ludwig R, Leech D, Gorton L (2012) Electron-transfer studies with a new flavin adenine dinucleotide-dependent glucose dehydrogenase and osmium polymers of different redox potentials. Anal Chem 84:334–341

    Article  CAS  Google Scholar 

  85. Lewis BE, Schramm VL (2003) Binding equilibrium isotope effects for glucose at the catalytic domain of human brain hexokinase. J Am Chem Soc 125:4785–4798

    Article  CAS  Google Scholar 

  86. Anicet N, Bourdillon C, Moiroux J, Savéant JM (1999) Step-by-step avidin-biotin construction of bienzyme electrodes. Kinetic analysis of the coupling between the catalytic activities of immobilized monomolecular layers of glucose oxidase and hexokinase. Langmuir 15:6527–6533

    Article  CAS  Google Scholar 

  87. Bunte C, Prucker O, König T, Rühe J (2010) Enzyme containing redox polymer networks for biosensors or biofuel cells: a photochemical approach. Langmuir 26:6019–6027

    Article  CAS  Google Scholar 

  88. Toghill KE, Compton RG (2010) Electrochemical nonenzymatic glucose sensors: a perspective and an evaluation. Int J Electrochem Sci 5:1246–1301

    CAS  Google Scholar 

  89. Cass AEG, Davis G, Francis GD, Hill HAO, Aston WJ, Higgins IJ, Plotkin EV, Scott LDL, Turner APF (1984) Ferrocene-mediated enzyme electrode for amperometric determination of glucose. Anal Chem 56:667–671

    Article  CAS  Google Scholar 

  90. Tsujimura S, Kojima S, Kano K, Ikeda T, Sato M, Sanada H, Omura H (2006) Novel FAD-dependent glucose dehydrogenase for a dioxygen-insensitive glucose biosensor. Biosci Biotechnol Biochem 70:654–659

    Article  CAS  Google Scholar 

  91. Lau KT, De Fortescu SAL, Murphy LJ, Slater JM (2003) Disposable glucose sensors for flow injection analysis using substituted 1,4-benzoquinone mediators. Electroanalysis 15:975–981

    Article  CAS  Google Scholar 

  92. Taylor C, Kenausis G, Katakis I, Heller A (1995) “Wiring” of glucose oxidase within a hydrogel made with polyvinyl imidazole complexed with [(Os-4,4′-dimethoxy-2,2′-bipyridine)Cl]+/2+1. J Electroanal Chem 396:511–515

    Article  Google Scholar 

  93. Katakis I, Dominguez E (1995) Characterization and stabilization of enzyme biosensors. Trends Anal Chem 14:310–319

    CAS  Google Scholar 

  94. Schugerl K, Hitzmann B, Jurgens H, Kullick T, Ulber R, Weigal B (1996) Challenges in integrating biosensors and FIA for on-line monitoring and control. Trends Biotechnol 14:21–31

    Article  Google Scholar 

  95. Li J, Lin X (2007) Glucose biosensor based on immobilization of glucose oxidase in poly(o-aminophenol) film on polypyrrole-Pt nanocomposite modified glassy carbon electrode. Biosens Bioelectron 22:2898–2905

    Article  CAS  Google Scholar 

  96. Loeb W (1909) Biochem Z 17:132

  97. Luo D, Wu L, Zhi J (2009) Fabrication of boron-doped diamond nanorod forest electrodes and their application in nonenzymatic amperometric glucose biosensing. ACS Nano 3:2121–2128

  98. Gao H, Xiao F, Ching CB, Duan H (2011) One-step electrochemical synthesis of PtNi nanoparticle-graphene nanocomposites for nonenzymatic amperometric glucose detection. ACS Appl Mater Interfaces 3:3049–3057

  99. Tian K, Prestgard M, Tiwari A (2014) A review of recent advances in nonenzymatic glucose sensors. Mater Sci Eng C 41:100–118

    Article  CAS  Google Scholar 

  100. Kang X, Mai Z, Zou X, Cai P, Mo J (2008) Glucose biosensors based on platinum nanoparticles-deposited carbon nanotubes in sol-gel chitosan/silica hybrid. Talanta 74:879–886

    Article  CAS  Google Scholar 

  101. Feng D, Wang F, Chen Z (2009) Electrochemical glucose sensor based on one-step construction of gold nanoparticle-chitosan composite film. Sensors Actuators B Chem 138:539–544

    Article  CAS  Google Scholar 

  102. Bai H, Han M, Du Y, Bao J, Dai Z (2010) Facile synthesis of porous tubular palladium nanostructures and their application in a nonenzymatic glucose sensor. Chem Commun 46:1739–1741

    Article  CAS  Google Scholar 

  103. Lu LM, Zhang L, Qu FL, Lu HX, Zhang XB, Wu ZS, Huan SY, Wang QA, Shen GL, Yu RQ (2009) A nano-Ni based ultrasensitive nonenzymatic electrochemical sensor for glucose: enhancing sensitivity through a nanowire array strategy. Biosens Bioelectron 25:218–223

    Article  CAS  Google Scholar 

  104. Huang TK, Lin KW, Tung SP, Cheng TM, Chang IC, Hsieh YZ, Lee CY, Chiu HT (2009) Glucose sensing by electrochemically grown copper nanobelt electrode. J Electroanal Chem 636:123–127

    Article  CAS  Google Scholar 

  105. Reitz E, Jia W, Gentile M, Wang Y, Lei Y (2008) CuO nanospheres based nonenzymatic glucose sensor. Electroanalysis 20:2482–2486

    Article  CAS  Google Scholar 

  106. Dong XC, Xu H, Wang XW, Huang YX, Chan-Park MB, Zhang H, Wang LH, Huang W, Chen P (2012) 3D graphene-cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection. ACS Nano 6:3206–3213

    Article  CAS  Google Scholar 

  107. Li C, Liu Y, Li L, Du Z, Xu S, Zhang M, Yin X, Wang T (2008) A novel amperometric biosensor based on NiO hollow nanospheres for biosensing glucose. Talanta 77:455–459

    Article  CAS  Google Scholar 

  108. Umar A, Rahman MM, Hahn YB (2009) MgO polyhedral nanocages and nanocrystals based glucose biosensor. Electrochem Commun 11:1353–1357

    Article  CAS  Google Scholar 

  109. Kong T, Chen Y, Ye Y, Zhang K, Wang Z, Wang X (2009) An amperometric glucose biosensor based on the immobilization of glucose oxidase on the ZnO nanotubes. Sensors Actuators B Chem 138:344–350

    Article  CAS  Google Scholar 

  110. Cao X, Wang N (2011) A novel nonenzymatic glucose sensor modified with Fe2O3 nanowire arrays. Analyst 136:4241–4246

    Article  CAS  Google Scholar 

  111. Wang X, Zhang Y, Banks CE, Chen Q, Ji X (2010) Nonenzymatic amperometric glucose biosensor based on nickel hexacyanoferrate nanoparticle film modified electrodes. Colloids Surfaces B Biointerfaces 78:363–366

    Article  CAS  Google Scholar 

  112. Bai Y, Sun Y, Sun C (2008) Pt-Pb nanowire array electrode for enzyme-free glucose detection. Biosens Bioelectron 24:579–585

    Article  CAS  Google Scholar 

  113. Li LH, Zhang WD, Ye JS (2008) Electrocatalytic oxidation of glucose at carbon nanotubes supported PtRu nanoparticles and its detection. Electroanalysis 20:2212–2216

    Article  CAS  Google Scholar 

  114. Holt-Hindle P, Nigro S, Asmussen M, Chen A (2008) Amperometric glucose sensor based on platinum-iridium nanomaterials. Electrochem Commun 10:1438–1441

    Article  CAS  Google Scholar 

  115. Mahshid SS, Mahshid S, Dolati A, Ghorbani M, Yang L, Luo S, Cai Q (2011) Template-based electrodeposition of Pt/Ni nanowires and its catalytic activity towards glucose oxidation. Electrochim Acta 58:551–555

    Article  CAS  Google Scholar 

  116. Ryu J, Kim K, Kim HS, Hahn HT, Lashmore D (2010) Intense pulsed light induced platinum-gold alloy formation on carbon nanotubes for nonenzymatic glucose detection. Biosens Bioelectron 26:602–607

    Article  CAS  Google Scholar 

  117. Tominaga M, Shimazoe T, Nagashima M, Taniguchi I (2008) Composition–activity relationships of carbon electrode-supported bimetallic gold-silver nanoparticles in electrocatalytic oxidation of glucose. J Electroanal Chem 615:51–61

    Article  CAS  Google Scholar 

  118. Yi Q, Yu W, Niu F (2010) Novel nanoporous binary Au-Ru electrocatalysts for glucose oxidation. Electroanalysis 22:556–563

    Article  CAS  Google Scholar 

  119. Chen LY, Fujita T, Ding Y, Chen MW (2010) A three-dimensional gold-decorated nanoporous copper core-shell composite for electrocatalysis and nonenzymatic biosensing. Adv Funct Mater 20:2279–2285

    Article  CAS  Google Scholar 

  120. Ni Y, Jin L, Zhanga L, Hong J (2010) Honeycomb-like Ni@C composite nanostructures: synthesis, properties and applications in the detection of glucose and the removal of heavy-metal ions. J Mater Chem 20:6430–6436

    Article  CAS  Google Scholar 

  121. Ding Y, Liu Y, Zhang L, Wang Y, Bellagamba M, Parisi J, Li CM, Lei Y (2011) Sensitive and selective nonenzymatic glucose detection using functional NiO-Pt hybrid nanofibers. Electrochim Acta 58:209–214

    Article  CAS  Google Scholar 

  122. Zhang X, Gu A, Wang G, Huang Y, Ji H, Fang B (2011) Porous Cu–NiO modified glass carbon electrode enhanced nonenzymatic glucose electrochemical sensors. Analyst 136:5175–5180

    Article  CAS  Google Scholar 

  123. Kumar SA, Cheng HW, Chen SM, Wang SF (2010) Preparation and characterization of copper nanoparticles/zinc oxide composite modified electrode and its application to glucose sensing. Mater Sci Eng C 30:86–91

    Article  CAS  Google Scholar 

  124. Wang AJ, Feng JJ, Li ZH, Liao QC, Wang ZZ, Chen JR (2012) Solvothermal synthesis of Cu/Cu2O hollow microspheres for nonenzymatic amperometric glucose sensing. Cryst Eng Comm 14:1289

    Article  CAS  Google Scholar 

  125. Wang W, Li Z, Zheng W, Yang J, Zhang H, Wang C (2009) Electrospun palladium (IV)-doped copper oxide composite nanofibers for nonenzymatic glucose sensors. Electrochem Commun 11:1811–1814

    Article  CAS  Google Scholar 

  126. Luo S, Su F, Liu C, Li J, Liu R, Xiao Y, Li Y, Liu X, Cai Q (2011) A new method for fabricating a CuO/TiO2 nanotube arrays electrode and its application as a sensitive nonenzymatic glucose sensor. Talanta 86:157–163

    Article  CAS  Google Scholar 

  127. Ding Y, Wang Y, Zhang L, Zhang H, Lei Y (2012) Preparation, characterization and application of novel conductive NiO–CdO nanofibers with dislocation feature. J Mater Chem 22:980–986

    Article  CAS  Google Scholar 

  128. Cao L, Ye J, Tong L, Tang B (2008) A new route to the considerable enhancement of glucose oxidase (GOx) activity: the simple assembly of a complex from CdTe quantum dots and GOx, and its glucose sensing. Chem Eur J 14:9633–9640

    Article  CAS  Google Scholar 

  129. Wu P, He Y, Wang HF, Yan XP (2010) Conjugation of glucose oxidase onto Mn-doped Zns quantum dots for phosphorescent sensing of glucose in biological fluids. Anal Chem 82:1427–1433

    Article  CAS  Google Scholar 

  130. Sun J, Zhu Y, Yang X, Li C (2009) Photoelectrochemical glucose biosensor incorporating CdS nanoparticles. Particuology 7:347–352

    Article  CAS  Google Scholar 

  131. Wang Z, Liu S, Wu P, Cai C (2009) Detection of glucose based on direct electron transfer reaction of glucose oxidase immobilized on highly ordered polyaniline nanotubes. Anal Chem 81:1638–1645

    Article  CAS  Google Scholar 

  132. Zenkl G, Mayr T, Klimant I (2008) Sugar-responsive fluorescent nanospheres. Macromol Biosci 8:146–152

    Article  CAS  Google Scholar 

  133. Lin LH, Shih JS (2011) Immobilized fullerene C60-enzyme-based electrochemical glucose sensor. J Chin Chem Soc 58:228–235

    Article  CAS  Google Scholar 

  134. Zhu Z, Garcia-Gancedo L, Flewitt AJ, Xie H, Moussy F, Milne WI (2012) A critical review of glucose biosensors based on carbon nanomaterials: carbon nanotubes and graphene. Sensors 12:5996–6022

    Article  Google Scholar 

  135. Rathod D, Dickinson C, Egan D, Dempsey E (2010) Platinum nanoparticle decoration of carbon materials with applications in nonenzymatic glucose sensing. Sensors Actuators B Chem 143:547–554

    Article  CAS  Google Scholar 

  136. Agarwal S, Greiner A, Wendorff JH (2009) Electrospinning of manmade and biopolymer nanofibers—progress in techniques, materials, and applications. Adv Funct Mater 19:2863–2879

    Article  CAS  Google Scholar 

  137. Lu X, Wang C, Wei Y (2009) One-dimensional composite nanomaterials: synthesis by electrospinning and their applications. Small 5:2349–2370

    Article  CAS  Google Scholar 

  138. Ramaseshan R, Sundarrajan S, Jose R, Ramakrishna S (2007) Nanostructured ceramics by electrospinning. J Appl Phys 102:111101

    Article  CAS  Google Scholar 

  139. Wu H, Pan W, Lin D, Li H (2012) Electrospinning of ceramic nanofibers: fabrication assembly and applications. J Adv Ceram 1:2–23

    Article  CAS  Google Scholar 

  140. Celebioglu A, Uyar T (2012) Electrospinning of nanofibers from non-polymeric systems: polymer-free nanofibers from cyclodextrin derivatives. Nanoscale 4:621–631

    Article  CAS  Google Scholar 

  141. Fong H, Chun I, Reneker DH (1999) Beaded nanofibers formed during electrospinning. Polymer 40:4585–4592

    Article  CAS  Google Scholar 

  142. Casper CL, Stephens JS, Tassi NG, Chase DB, Rabolt JF (2004) Controlling surface morphology of electrospun polystyrene fibers: effect of humidity and molecular weight in the electrospinning process. Macromolecules 37:573–578

    Article  CAS  Google Scholar 

  143. Thompson CJ, Chase GG, Yarin AL, Reneker DH (2007) Effects of parameters on nanofiber diameter determined from electrospinning model. Polymer 48:6913–6922

    Article  CAS  Google Scholar 

  144. Ramakrishna S, Fujihara K, Teo WE, Lim TC, Ma Z (2005) An introduction to electrospinning and nanofibers. World Scientific Publishing Co. Pte. Ltd, Singapore

    Book  Google Scholar 

  145. Wendorff JH, Agarwal S, Greiner A (2012) Electrospinning: materials, processing, and applications. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany

    Book  Google Scholar 

  146. Greiner A, Wendorff JH (2007) Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew Chem Int Ed 46:5670–5703

    Article  CAS  Google Scholar 

  147. Uyar T, Besenbacher F (2008) Electrospinning of uniform polystyrene fibers: the effect of solvent conductivity. Polymer 49:5336–5343

    Article  CAS  Google Scholar 

  148. Celebioglu A, Uyar T (2011) Electrospun porous cellulose acetate fibers from volatile solvent mixture. Mater Lett 65:2291–2294

    Article  CAS  Google Scholar 

  149. Persano L, Camposeo A, Tekmen C, Pisignano D (2013) Industrial upscaling of electrospinning and applications of polymer nanofibers: a review. Macromol Mater Eng 298:504–520

    Article  CAS  Google Scholar 

  150. Yan G, Yu J, Qiu Y, Yi X, Lu J, Zhou X, Bai X (2011) Self-assembly of electrospun polymer nanofibers: a general phenomenon generating honeycomb-patterned nanofibrous structures. Langmuir 27:4285–4289

    Article  CAS  Google Scholar 

  151. Sun B, Long YZ, Zhang HD, Li MM, Duvail JL, Jiang XY, Yin HL (2014) Advances in three-dimensional nanofibrous macrostructures via electrospinning. Prog Polym Sci 39:862–890

    Article  CAS  Google Scholar 

  152. Dong H, Wang D, Sun G, Hinestroza JP (2008) Assembly of metal nanoparticles on electrospun nylon 6 nanofibers by control of interfacial hydrogen-bonding interactions. Chem Mater 20:6627–6632

    Article  CAS  Google Scholar 

  153. Sahay R, Kumar PS, Sridhar R, Sundaramurthy J, Venugopal J, Mhaisalkar SG, Ramakrishna S (2012) Electrospun composite nanofibers and their multifaceted applications. J Mater Chem 22:12953–12971

    Article  CAS  Google Scholar 

  154. Tamaki T, Sugiyama T, Mizoe M, Oshiba Y, Yamaguchi T (2014) Reducing physical adsorption of enzymes by surface modification of carbon black for high-current-density biofuel cells. J Electrochem Soc 161:H3095–H3099

    Article  CAS  Google Scholar 

  155. de Luiz MI, Lukachova LV, Gorton L, Laurell T, Karyakin AA (2001) Evaluation of glucose biosensors based on Prussian blue and lyophilised, crystalline, and cross-linked glucose oxidases (CLEC®). Talanta 54:963–974

    Article  Google Scholar 

  156. Hodak J, Etchenique R, Calvo EJ, Singhal K, Bartlett PN (1997) Layer-by-layer self-assembly of glucose oxidase with a poly(allylamine)ferrocene redox mediator. Langmuir 13:2708–2716

    Article  CAS  Google Scholar 

  157. Guo C, Zhang X, Huo H, Xu C, Han X (2013) Co3O4 microspheres with free-standing nanofibers for high performance nonenzymatic glucose sensor. Analyst 138:6727–6731

    Article  CAS  Google Scholar 

  158. Ramakrishna S, Mayer J, Wintermantel E, Leong KW (2001) Biomedical applications of polymer-composite materials: a review. Compos Sci Technol 61:1189–1224

    Article  CAS  Google Scholar 

  159. Balazs AC, Emrick T, Russell TP (2006) Nanoparticle polymer composites: where two small worlds meet. Science 314:1107–1110

    Article  CAS  Google Scholar 

  160. Sun HZ, Yang B (2008) In situ preparation of nanoparticles/polymer composites. Sci Chin Ser E-Technol Sci 51:1886–1901

    Article  CAS  Google Scholar 

  161. Schmidt G, Malwitz MM (2003) Properties of polymer–nanoparticle composites. Curr Opin Colloid Interface Sci 8:103–108

    Article  CAS  Google Scholar 

  162. Vauthier C, Cabane B, Labarre D (2008) How to concentrate nanoparticles and avoid aggregation? Eur J Pharm Biopharm 69:466–475

    Article  CAS  Google Scholar 

  163. Mathew M, Sandhyarani N (2014) Detection of glucose using immobilized bienzyme on cyclic bisureas-gold nanoparticle conjugate. Anal Biochem 459:31–38

    Article  CAS  Google Scholar 

  164. Jin C, Taniguchi I (2007) Electrocatalytic oxidation of glucose on gold nanocomposite electrodes. Chem Eng Technol 30:1298–1301

    Article  CAS  Google Scholar 

  165. Li C, Su Y, Lv X, Xia H, Shi H, Yang X, Zhang J, Wang Y (2012) Controllable anchoring of gold nanoparticles to polypyrrole nanofibers by hydrogen bonding and their application in nonenzymatic glucose sensors. Biosens Bioelectron 38:402–406

    Article  CAS  Google Scholar 

  166. Raicopol M, Prună A, Damian C, Pilan L (2013) Functionalized single-walled carbon nanotubes/polypyrrole composites for amperometric glucose biosensors. Nanoscale Res Lett 8:316

    Article  CAS  Google Scholar 

  167. Forzani ES, Zhang H, Nagahara LA, Amlani I, Tsui R, Tao N (2004) A conducting polymer nanojunction sensor for glucose detection. Nano Lett 4:1785–1788

    Article  CAS  Google Scholar 

  168. Nien PC, Tung TS, Ho KC (2006) Amperometric glucose biosensor based on entrapment of glucose oxidase in a poly(3,4-ethylenedioxythiophene) film. Electroanalysis 18:1408–1415

    Article  CAS  Google Scholar 

  169. Yang G, Kampstra KL, Abidian MR (2014) High-performance conducting polymer nanofiber biosensors for detection of biomolecules. Adv Mater 26:4954–4960

    Article  CAS  Google Scholar 

  170. Macaya DJ, Nikolou M, Takamatsu S, Mabeck JT, Owens RM, Malliaras GG (2007) Simple glucose sensors with micromolar sensitivity based on organic electrochemical transistors. Sensors Actuators B Chem 123:374–378

    Article  CAS  Google Scholar 

  171. Zhang M, Liao C, Mak CH, You P, Mak CL, Yan F (2015) Highly sensitive glucose sensors based on enzyme-modified whole-graphene solution-gated transistors. Sci Rep 5:8311

    Article  CAS  Google Scholar 

  172. Olenic L, Mihailescu G, Pruneanu S, Lupu D, Biris AR, Margineanu P, Garabagiu S, Biris AS (2009) Investigation of carbon nanofibers as support for bioactive substances. J Mater Sci Mater Med 20:177–183

    Article  CAS  Google Scholar 

  173. Periasamy AP, Chang YJ, Chen SM (2011) Amperometric glucose sensor based on glucose oxidase immobilized on gelatin-multiwalled carbon nanotube modified glassy carbon electrode. Bioelectrochemistry 80:114–120

    Article  CAS  Google Scholar 

  174. Wu S, Ju HX, Liu Y (2007) Conductive mesocellular silica-carbon nanocomposite foams for immobilization, direct electrochemistry, and biosensing of proteins. Adv Funct Mater 17:585–592

    Article  CAS  Google Scholar 

  175. Liu Y, Teng H, Hou H, You T (2009) Nonenzymatic glucose sensor based on renewable electrospun Ni nanoparticle-loaded carbon nanofiber paste electrode. Biosens Bioelectron 24:3329–3334

    Article  CAS  Google Scholar 

  176. Zhang L, Li Y, Zhang Q, Wang H (2013) Hierarchical nanostructure of WO3 nanorods on TiO2 nanofibers and the enhanced visible light photocatalytic activity for degradation of organic pollutants. Cryst Eng Comm 15:5986–5993

    Article  CAS  Google Scholar 

  177. Ostermann R, Li D, Yin Y, McCann JT, Xia Y (2006) V2O5 nanorods on TiO2 nanofibers: a new class of hierarchical nanostructures enabled by electrospinning and calcination. 6:1297–1302

  178. Li M, Liu L, Xiong Y, Liu X, Nsabimana A, Bo X, Guo L (2015) Bimetallic MCo (M = Cu, Fe, Ni, and Mn) nanoparticles doped-carbon nanofibers synthetized by electrospinning for nonenzymatic glucose detection. Sensors Actuators B Chem 207:614–622

    Article  CAS  Google Scholar 

  179. Uzun SD, Kayaci F, Uyar T, Timur S, Toppare L (2014) Bioactive surface design based on functional composite electrospun nano fibers for biomolecule immobilization and biosensor applications. ACS Appl Mater Interfaces 6:5235–5243

    Article  CAS  Google Scholar 

  180. Zhao M, Gao Y, Sun J, Gao F (2015) Mediatorless glucose biosensor and direct electron transfer type glucose/air biofuel cell enabled with carbon nanodots. Anal Chem 87:2615–2622

    Article  CAS  Google Scholar 

  181. Cai C, Chen J (2004) Direct electron transfer of glucose oxidase promoted by carbon nanotubes. Anal Biochem 332:75–83

    Article  CAS  Google Scholar 

  182. Zhang X, Liu D, Li L, You T (2015) Direct electrochemistry of glucose oxidase on novel free-standing nitrogen-doped carbon nanospheres@carbon nanofibers composite film. Sci Rep 5:9885

    Article  CAS  Google Scholar 

  183. Anitha S, Natarajan TS (2013) Fabrication of hierarchical ZnO enriched fibrous PVA membrane. J Nanosci Nanotechnol 13:4256–4264

    Article  CAS  Google Scholar 

  184. Anitha S, Thiruvadigal DJ, Natarajan TS (2011) In-situ preparation of high optical quality ZnO nanoparticles in nanofibrous PVA matrix. Mater Lett 65:2872–2876

    Article  CAS  Google Scholar 

  185. Yuan Y, Zhao Y, Li H, Li Y, Gao X, Zheng C, Zhang J (2012) Electrospun metal oxide–TiO2 nanofibers for elemental mercury removal from flue gas. J Hazard Mater 227–228:427–435

    Article  CAS  Google Scholar 

  186. Horzum N, Muñoz-Espí R, Glasser G, Demir MM, Landfester K, Crespy D (2012) Hierarchically structured metal oxide/silica nanofibers by colloid electrospinning. ACS Appl Mater Interfaces 4:6338–6345

    Article  CAS  Google Scholar 

  187. Hwang SH, Song J, Jung Y, Kweon OY, Song H, Jang J (2011) Electrospun ZnO/TiO2 composite nanofibers as a bactericidal agent. Chem Commun 47:9164–9166

    Article  CAS  Google Scholar 

  188. Wang W, Li Z, Zheng W, Dong B, Li S, Wang C (2010) A novel nonenzymatic glucose sensor based on nickel (II) oxide electrospun nanofibers. J Nanosci Nanotechnol 10:7537–7540

    Article  CAS  Google Scholar 

  189. Zheng B, Liu G, Yao A, Xiao Y, Du J, Guo Y, Xiao D, Hu Q, Choi MMF (2014) A sensitive AgNPs/CuO nanofibers nonenzymatic glucose sensor based on electrospinning technology. Sensors Actuators B Chem 195:431–438

    Article  CAS  Google Scholar 

  190. Ahmad M, Pan C, Luo Z, Zhu J (2010) A single ZnO nanofiber-based highly sensitive amperometric glucose biosensor. J Phys Chem C 114:9308–9313

    Article  CAS  Google Scholar 

  191. Lu N, Shao C, Li X, Shen T, Zhang M, Miao F, Zhang P, Zhang X, Wang K, Zhang Y, Liu Y (2014) CuO/Cu2O nanofibers as electrode materials for nonenzymatic glucose sensors with improved sensitivity. RSC Adv 4:31056–31061

    Article  CAS  Google Scholar 

  192. Kayaci F, Ozgit-Akgun C, Biyikli N, Uyar T (2013) Surface-decorated ZnO nanoparticles and ZnO nanocoating on electrospun polymeric nanofibers by atomic layer deposition for flexible photocatalytic nanofibrous membranes. RSC Adv 3:6817–6820

    Article  CAS  Google Scholar 

  193. Deniz AE, Celebioglu A, Kayaci F, Uyar T (2011) Electrospun polymeric nanofibrous composites containing TiO2 short nanofibers. Mater Chem Phys 129:701–704

    Article  CAS  Google Scholar 

  194. Khalil A, Dimas C, Hashaikeh R (2015) Electrospun copper oxide nanofibers as infrared photodetectors. Appl Phys A 118:217–224

    Article  CAS  Google Scholar 

  195. Zhou X, Qiu Y, Yu J, Yin J, Bai X (2012) High electrochemical activity from hybrid materials of electrospun tungsten oxide nanofibers and carbon black. J Mater Sci 47:6607–6613

    Article  CAS  Google Scholar 

  196. Katoch A, Choi SW, Kim SS (2015) Nanograins in electrospun oxide nanofibers. Met Mater Int 21:213–221

    Article  CAS  Google Scholar 

  197. Kim HK, Honda W, Kim BS, Kim IS (2013) Preparation and magnetic properties of electrospun CuO/NiO bimetallic nanofibers via sol-gel electrospinning. J Mater Sci 48:1111–1116

    Article  CAS  Google Scholar 

  198. Ding Y, Wang Y, Su L, Zhang H, Lei Y (2010) Preparation and characterization of NiO–Ag nanofibers, NiO nanofibers, and porous Ag: towards the development of a highly sensitive and selective nonenzymatic glucose sensor. J Mater Chem 20:9918–9926

    Article  CAS  Google Scholar 

  199. Cao F, Gong J (2012) Nonenzymatic glucose sensor based on CuO microfibers composed of CuO nanoparticles. Anal Chim Acta 723:39–44

    Article  CAS  Google Scholar 

  200. Song Y, Li X, Wei C, Fu J, Xu F, Tan H, Tang J, Wang L (2015) A green strategy to prepare metal oxide superstructure from metal-organic frameworks. Sci Rep 5:8401

    Article  CAS  Google Scholar 

  201. Zhou C, Xu L, Song J, Xing R, Xu S, Liu D, Song H (2014) Ultrasensitive nonenzymatic glucose sensor based on three-dimensional network of ZnO-CuO hierarchical nanocomposites by electrospinning. Sci Rep 4:7382

    Article  CAS  Google Scholar 

  202. Anitha S, Thiruvadigal DJ, Natarajan TS (2011) A study on defect controlled morphology of organic/inorganic composite nanofibers with different heat flow rates. Mater Lett 65:167–170

    Article  CAS  Google Scholar 

  203. Wang W, Zhang L, Tong S, Li X, Song W (2009) Three-dimensional network films of electrospun copper oxide nanofibers for glucose determination. Biosens Bioelectron 25:708–714

    Article  CAS  Google Scholar 

  204. Liu G, Zheng B, Jiang Y, Cai Y, Du J, Yuan H, Xiao D (2012) Improvement of sensitive CuO NFs-ITO nonenzymatic glucose sensor based on in situ electrospun fiber. Talanta 101:24–31

    Article  CAS  Google Scholar 

  205. Pickup JC, Hussain F, Evans ND, Rolinski OJ, Birch DJS (2005) Fluorescence-based glucose sensors. Biosens Bioelectron 20:2555–2565

    Article  CAS  Google Scholar 

  206. Xia Y, Ye J, Tan K, Wang J, Yang G (2013) Colorimetric visualization of glucose at the submicromole level in serum by a homogenous silver nanoprism-glucose oxidase system. Anal Chem 85:6241–6247

    Article  CAS  Google Scholar 

  207. Zhao W, Brook MA, Li Y (2008) Design of gold nanoparticle-based colorimetric biosensing assays. Chem Biol Chem 9:2363–2371

    Article  CAS  Google Scholar 

  208. Wang XD, Chen HX, Zhou TY, Lin ZJ, Zeng JB, Xie ZX, Chen X, Wong KY, Chen GN, Wang XR (2009) Optical colorimetric sensor strip for direct readout glucose measurement. Biosens Bioelectron 24:3702–3705

    Article  CAS  Google Scholar 

  209. Xu X, Yang X (2011) Facile colorimetric detection of glucose based on an organic Fenton reaction. Anal Methods 3:1056–1059

    Article  CAS  Google Scholar 

  210. Senthamizhan A, Celebioglu A, Uyar T (2015) Real-time selective visual monitoring of Hg2+ detection at ppt level: an approach to lighting electrospun nanofibers using gold nanoclusters. Sci Rep 5:10403

    Article  Google Scholar 

  211. Chen LY, Wang CW, Yuan Z, Chang HT (2015) Fluorescent gold nanoclusters: recent advances in sensing and imaging. Anal Chem 87:216–229

    Article  CAS  Google Scholar 

  212. Basabe-Desmonts L, Reinhoudt DN, Crego-Calama M (2007) Design of fluorescent materials for chemical sensing. Chem Soc Rev 36:993–1017

    Article  CAS  Google Scholar 

  213. Song Y, Wei W, Qu X (2011) Colorimetric biosensing using smart materials. Adv Mater 23:4215–4236

    Article  CAS  Google Scholar 

  214. Costa MN, Veigas B, Jacob JM, Santos DS, Gomes J, Baptista PV, Martins R, Inácio J, Fortunato E (2014) A low cost, safe, disposable, rapid and self-sustainable paper-based platform for diagnostic testing: lab-on-paper. Nanotechnology 25:094006

    Article  CAS  Google Scholar 

  215. Takatsuji Y, Yamasaki R, Iwanaga A, Lienemann M, Linder MB, Haruyama T (2013) Solid-support immobilization of a “swing” fusion protein for enhanced glucose oxidase catalytic activity. Colloids Surf B: Biointerfaces 112:186–191

    Article  CAS  Google Scholar 

  216. Snejdárková M, Rehák M, Otto M (1993) Design of a glucose minisensor based on streptavidin-glucose oxidase complex coupling with self-assembled biotinylated phospholipid membrane on solid support. Anal Chem 65:665–668

    Article  Google Scholar 

  217. Ji X, Su Z, Wang P, Ma G, Zhang S (2014) “Ready-to-use” hollow nanofiber membrane-based glucose testing strips. Analyst 139:6467–6473

    Article  CAS  Google Scholar 

  218. Zhou C, Shi Y, Ding X, Li M, Luo J, Lu Z, Xiao D (2013) Development of a fast and sensitive glucose biosensor using iridium complex-doped electrospun optical fibrous membrane. Anal Chem 85:1171–1176

    Article  CAS  Google Scholar 

  219. Wang J (2008) In vivo glucose monitoring: towards “sense and act” feedback-loop individualized medical systems. Talanta 75:636–641

    Article  CAS  Google Scholar 

  220. Pickup JC, Hussain F, Evans ND, Sachedina N (2005) In vivo glucose monitoring: the clinical reality and the promise. Biosens Bioelectron 20:1897–1902

    Article  CAS  Google Scholar 

  221. Jiang Y, Zhao H, Lin Y, Zhu N, Ma Y, Mao L (2010) Colorimetric detection of glucose in rat brain using gold nanoparticles. Angew Chem Int Ed 49:4800–4804

    Article  CAS  Google Scholar 

  222. Shichiri M, Kawamori R, Yamasaki Y, Hakui N, Abe H (1982) Wearable artificial endocrine pancrease with needle-type glucose sensor. Lancet 2:1129–1131

    Article  CAS  Google Scholar 

  223. Ozaydin-Ince G, Dubach JM, Gleason KK, Clark HA (2011) Microworm optode sensors limit particle diffusion to enable in vivo measurements. Proc Natl Acad Sci U S A 108:2656–2661

    Article  CAS  Google Scholar 

  224. Pleitez MA, Lieblein T, Bauer A, Hertzberg O, Lilienfeld-Toal HV, Mäntele W (2013) In vivo noninvasive monitoring of glucose concentration in human epidermis by mid-infrared pulsed photoacoustic spectroscopy. Anal Chem 85:1013–1020

    Article  CAS  Google Scholar 

  225. Nakayama D, Takeoka Y, Watanabe M, Kataoka K (2003) Simple and precise preparation of a porous gel for a colorimetric glucose sensor by a templating technique. Angew Chem Int Ed 42:4197–4200

    Article  CAS  Google Scholar 

  226. Heo YJ, Shibata H, Okitsu T, Kawanishi T, Takeuchi S (2011) Long-term in vivo glucose monitoring using fluorescent hydrogel fibers. Proc Natl Acad Sci U S A 108:13399–13403

    Article  CAS  Google Scholar 

  227. Yoon J, Czarnik AW (1992) Fluorescent chemosensors of carbohydrates. A means of chemically communicating the binding of polyols in water based on chelation-enhanced quenching. J Am Chem Soc 114:5874–5875

    Article  CAS  Google Scholar 

  228. Balaconis MK, Luo Y, Clark HA (2015) Glucose-sensitive nanofiber scaffolds with an improved sensing design for physiological conditions. Analyst 140:716–723

    Article  CAS  Google Scholar 

Download references

Acknowledgments

S.A. and B.B. thank the Scientific and Technological Research Council of Turkey (TÜBITAK) (TÜBITAK-BIDEB 2216, Research Fellowship Programme for Foreign Citizens) for postdoctoral fellowship funding. T.U. acknowledges partial support of The Turkish Academy of Sciences – Outstanding Young Scientists Award Program (TUBA-GEBIP).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anitha Senthamizhan, Brabu Balusamy or Tamer Uyar.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Published in the topical collection Fiber-based Platforms for Bioanalytics with guest editors Antje J. Baeumner and R. Kenneth Marcus.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senthamizhan, A., Balusamy, B. & Uyar, T. Glucose sensors based on electrospun nanofibers: a review. Anal Bioanal Chem 408, 1285–1306 (2016). https://doi.org/10.1007/s00216-015-9152-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-9152-x

Keywords

Navigation