Skip to main content
Log in

Recent progress on fingerprint visualization and analysis by imaging ridge residue components

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Fingerprints have long been and are still considered to be the gold standard for personal identification in forensic investigations. Developing or enhancing the visualization of invisible fingerprints, so-called latent fingerprints (LFPs), remains to be the core subject in forensic science. Moreover, the past few years have witnessed a renewal of research interest in the possibility that a fingerprint can provide additional information than just identification of individuals, such as personal traits, the presence of human metabolites with diagnostic values, and the evidence of contact with explosives or illicit drugs. Fingerprint analysis has manifested itself as a research area far beyond the scope of forensics, to which not only conventional fingerprint examiners but also researchers from chemistry, biochemistry, medical science, material science, and nanotechnology fields have made significant contributions in recent years. Beginning with a brief overview of the components present in LFP residue that essentially determines which method or reagent will give the best visualization result, this paper reviews the progress since 2007 on new reagents and methods developed for LFP visualization and simultaneous detection of specific chemicals present in the LFP residue, with an emphasis on the utilization of mass spectrometry, infrared spectroscopy, nanoparticles, and immunogenic and nucleic acid reagents.

Fingerprint visualization and analysis by imaging ridge residue components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Maltoni D, Maio D, Jain AK, Prabhakar S (2009) P34. Handbook of fingerprint recognition, 2nd edn. London, Springer

    Book  Google Scholar 

  2. Champod C, Lennard C, Margot P, Stoilovic M (2004) Fingerprints and other ridge skin impressions. CRC Press, Boca Raton

    Book  Google Scholar 

  3. Faulds H (1880) On the skin-furrows of the hand. Nature 22:60

    Article  Google Scholar 

  4. Polson CJ (1950) Finger prints and finger printing: an historical study. J Crim Law Criminol 41:495–517

    Google Scholar 

  5. Francese S, Bradshaw R, Ferguson LS, Wolstemholme R, Clench M, Bleay S (2013) Beyond the ridge pattern: multi-informative analysis of latent fingermarks by MALDI mass spectrometry. Analyst 138:4215–4228

    Article  CAS  Google Scholar 

  6. Becue A, Moret S, Champod C, Margot P (2011) Use of stains to detect fingermarks. Biotech Histochem 86:140–160

    Article  CAS  Google Scholar 

  7. Ramotowski RS (2001) Composition of latent print residue. In: Lee HC, Gaensslen RE (eds) Advances in fingerprint technology, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  8. Girod A, Ramotowski R, Weyermann C (2012) Composition of fingermark residue: a qualitative and quantitative review. Forensic Sci Int 223:10–24

    Article  CAS  Google Scholar 

  9. Jelly R, Patton ELT, Lennard C, Lewis SW, Lim KF (2009) The detection of latent fingermarks on porous surfaces using amino acid sensitive reagents: a review. Anal Chim Acta 652:128–142

    Article  CAS  Google Scholar 

  10. Hazarika P, Russell DA (2012) Advances in fingerprint analysis. Angew Chem Int Ed 51:3524–3531

    Article  CAS  Google Scholar 

  11. Ferguson LS, Wulfert F, Wolstenholme R, Fonville JM, Clench MR, Carolan VA, Francese S (2012) Direct detection of peptides and small proteins in fingermarks and determination of sex by MALDI mass spectrometry profiling. Analyst 137:4686–4692

    Article  CAS  Google Scholar 

  12. Ramasastry P, Downing DT, Pochi PE, Strauss JS (1970) Chemical composition of human skin surface lipids from birth to puberty. J Invest Dermatol 54(2):143

    Google Scholar 

  13. Spindler X, Hofstetter O, McDonagh AM, Roux C, Lennard C (2011) Enhancement of latent fingermarks on non-porous surfaces using anti-l-amino acid antibodies conjugated to gold nanoparticles. Chem Commun 47:5602–5604

    Article  CAS  Google Scholar 

  14. Leggett R, Lee-Smith EE, Jickells SM, Russell DA (2007) "Intelligent" fingerprinting: Simultaneous identification of drug metabolites and individuals by using antibody-functionalized nanoparticles. Angew Chem Int Ed 46:4100–4103

    Article  CAS  Google Scholar 

  15. Ifa DR, Manicke NE, Dill AL, Cooks RG (2008) Latent fingerprint chemical imaging by mass spectrometry. Science 321:805

    Article  CAS  Google Scholar 

  16. Peng TH, Qin WW, Wang K, Shi JY, Fan CH, Li D (2015) Nanoplasmonic imaging of latent fingerprints with explosive RDX residues. Anal Chem 87(18):9403–9407

    Article  CAS  Google Scholar 

  17. Drapel V, Becue A, Champod C, Margot P (2009) Identification of promising antigenic component in latent fingermark residue. Forensic Sci Int 184(1/3):47–53

    Article  CAS  Google Scholar 

  18. Wilson M (2005) Microbial inhabitants of humans: their ecology and role in health and disease. Cambridge University Press, Cambridge

    Google Scholar 

  19. Olsen RD (1972) The chemical composition of palmar sweat. Fingerprint Ident Mag 53(10):3–23

    Google Scholar 

  20. Fuchs E (1990) Epidermal differentiation—the bare essentials. J Cell Biol 111(6):2807–2814

    Article  CAS  Google Scholar 

  21. Quinton PM (1983) Sweating and its disorder. Annu Rev Med 34:429–452

    Article  CAS  Google Scholar 

  22. Harker M, Coulson H, Fairweather I, Taylor D, Kaykin CA (2006) Study of metabolite composition of eccrine sweat from healthy male and female human subjects by 1H NMR spectroscopy. Metabolomics 2(3):105–112

    Article  CAS  Google Scholar 

  23. Folk GE, Semken A (1991) The evolution of sweat glands. Int J Biometeorol 35(3):180–186

    Article  Google Scholar 

  24. Wilke K, Martin A, Terstegen L, Biel SS (2007) A short history of sweat gland biology. Int J Cosmet Sci 29(3):169–179

    Article  CAS  Google Scholar 

  25. Labows JN, Preti G, Hoelzle E, Leyden J (1979) Steroid analysis of human apocrine secretion. Steroids 34:249–258

    Article  CAS  Google Scholar 

  26. Schultz IJ (1969) Micropuncture studies of the sweat formation in cystic fibrosis patients. J Clin Invest 48:1470–1477

    Article  Google Scholar 

  27. Olsen RD (1978) Scott’s fingerprint mechanics. Springfield, Thomas CC

    Google Scholar 

  28. Goode GC, Morris JR (1983) Latent fingerprints: a review of their origin, composition, and methods for detection. Aldermaston, Atomic Weapons Research Establishment

    Google Scholar 

  29. Hamilton PB (1965) Amino acids on hands. Nature 205:284–285

    Article  CAS  Google Scholar 

  30. Hadorn B, Hanimann F, Anders P, Curtius H, Halverson R (1967) Free amino-acids in human sweat from different parts of the body. Nature 215:416–417

    Article  CAS  Google Scholar 

  31. Oro J, Skewes H (1965) Free amino acids on human fingers: the question of contamination in microanalysis. Nature 207:1042–1045

    Article  CAS  Google Scholar 

  32. Morgan MHB (1970) PhD thesis. University of Birmingham, Birmingham

  33. Marshall T (1984) Analysis of human sweat proteins by two-dimensional electrophoresis and ultrasensitive silver staining. Anal Bioanal Chem 139:506–509

    CAS  Google Scholar 

  34. Nakayashiki N (1990) Sweat protein components tested by SDS-polyarylamide gel electrophoresis followed by immunoblotting. J Exp Med 161:25–31

    CAS  Google Scholar 

  35. Uyttendaele M, De Groote M, Blaton V, Peeters H (1977) Analysis of the proteins in sweat and urine by agarose-gel isotachophoresis. J Chromatogr 132:261–266

    Article  CAS  Google Scholar 

  36. Chen XZ, Wang ZD (2012) Exocrine physiology: basic theories and clinical aspects, 2nd edn. Scientific Press, Beijing

    Google Scholar 

  37. Reinholz AD (2008) Albumin development method to visualize friction ridge detail on porous surface. J Forensic Ident 58(5):524–539

    Google Scholar 

  38. van Dam A, Aalders MCG, van de Braak K, Hardy HJJ, van Leeuwen TG, Lambrechts SAG (2013) Simultaneous labeling of multiple components in a single fingermark. Forensic Sci Int 232:173–179

    Article  Google Scholar 

  39. van Dam A, van Nes KA, Aalders MCG, van Leeuwen TG, Lambrechts SAG (2014) Immunolabeling of fingermarks left on forensic relevant surfaces, including thermal paper. Anal Methods 6(4):1051–1058

    Article  Google Scholar 

  40. van Dam A, Aalders MCG, van Leeuwen TG, Lambrechts SAG (2013) The compatibility of fingerprint visualization techniques with immunolabelling. J Forensic Sci 58(4):999–1002

    Article  Google Scholar 

  41. van Dam A, Aalders MCG, Irmak D, van Leeuwen TG, Lambrechts SAG, de Puit M, Gorre SM (2014) Immunolabeling and the compatibility with a variety of fingermark development techniques. Sci Justice 54(5):356–362

    Article  Google Scholar 

  42. Wood M, Maynard P, Spindler X, Lennard C, Roux C (2012) Visualization of latent fingermarks using an aptamer-based reagent. Angew Chem Int Ed 124(49):12438–12440

    Article  Google Scholar 

  43. Wang J, Wei T, Li XY, Zhang BH, Wang JX, Huang C, Yuan Q (2014) Near-infrared light mediated imaging of latent fingerprints based on molecular recognition. Angew Chem Int Ed 53(6):1616–1620

    Article  CAS  Google Scholar 

  44. Xu LR, Zhou ZY, Zhang CZ, He YY, Su B (2014) Electrochemiluminescence imaging of latent fingermarks through the immunodetection of secretions in human perspiration. Chem Commun 50(65):9097–9100

    Article  CAS  Google Scholar 

  45. He YY, Xu LR, Zhu Y, Wei QH, Zhang MQ, Su B (2014) Immunological multimetal deposition for rapid visualization of sweat fingerprints. Angew Chem Int Ed 53(46):12609–12612

    CAS  Google Scholar 

  46. Lambrechts SAG, van Dam A, de Vos J, van Weert A, Sijen T, Aalders MCG (2012) On the autofluorescence of fingermarks. Forensic Sci Int 222(1/3):89–93

    Article  CAS  Google Scholar 

  47. van Dam A, Schwarz JCV, de Vos J, Siebes M, Sijen T, van Leeuwen TG, Aalders MCG, Lambrechts SAG (2014) Oxidation monitoring by fluorescence spectroscopy reveals the age of fingermarks. Angew Chem Int Ed 53(24):6272–6276

    Article  Google Scholar 

  48. Ricci C, Phiriyavityopas P, Curum N, Chan KLA, Jickells S, Kazarian SG (2007) Chemical imaging of latent fingerprint residue. Appl Spectros 61(5):514–522

    Article  CAS  Google Scholar 

  49. Williams DK, Brown CJ, Bruker J (2011) Characterization of children’s latent fingerprint residues by infrared microspectroscopy: forensic implications. Forensic Sci Int 206(1/3):161–165

    Article  CAS  Google Scholar 

  50. Connatser RM, Prokes SM, Glembocki OJ, Schuler RL, Gardner CW, Lewis SA, Lewis LA (2010) Toward surface-enhanced Raman imaging of latent fingerprints. J Forensic Sci 55(6):1462–1470

    Article  CAS  Google Scholar 

  51. Hartzell-Baguley B, Hipp RE, Morgan NR (2007) Chemical composition of latent fingerprints by gas chromatography-mass spectrometry. J Chem Educ 84(4):689–6

    Article  CAS  Google Scholar 

  52. Duff JM, Menzel ER (1978) Laser assisted thin-layer chromatography and luminescence of fingerprints: an approach to fingerprint age determination. J Forensic Sci 23(1):129–134

    Article  CAS  Google Scholar 

  53. Hazarika P, Jickells SM, Wolff K, Russell DA (2010) Multiplexed detection of metabolites of narcotic drugs from a single latent fingermark. Anal Chem 82(22):9150–9154

    Article  CAS  Google Scholar 

  54. Hazarika P, Jickells SM, Wolff K, Russell DA (2008) Imaging of latent fingerprints through the detection of drugs and metabolites. Angew Chem Int Ed 47(52):10167–10170

    Article  CAS  Google Scholar 

  55. Boddis AM, Russell DA (2011) Simultaneous development and detection of drug metabolites in latent fingermarks using antibody-magnetic particle conjugates. Anal Methods 3(3):519–532

    Article  CAS  Google Scholar 

  56. Boddis AM, Russell DA (2012) Development of aged fingermarks using antibody-magnetic particle conjugates. Anal Methods 4(3):637–641

    Article  CAS  Google Scholar 

  57. Hazarika P, Jickells SM, Russell DA (2009) Rapid detection of drug metabolites in latent fingermarks. Analyst 134(1):93–96

    Article  CAS  Google Scholar 

  58. Wolfbeis OS (2009) Nanoparticle-enhanced fluorescence imaging of latent fingerprints reveals drug abuse. Angew Chem Int Ed 48(13):2268–2269

    Article  CAS  Google Scholar 

  59. Xu LR, Zhang CZ, He YY, Su B (2015) Advances in the development and component recognition of latent fingerprints. Sci Chin Chem 58(7):1090–1096

    Article  CAS  Google Scholar 

  60. Becue A, Moret S, Champod C, Margot P (2012) Use of stains to detect fingermarks. Biotech Histochem 86(3):140–160

    Article  Google Scholar 

  61. Rowell F, Hudson K, Seviour J (2009) Detection of drugs and their metabolites in dusted latent fingermarks by mass spectrometry. Analyst 134:701–707

    Article  CAS  Google Scholar 

  62. Benton M, Rowell F, Sundar L, Jan M (2009) Direct detection of nicotine and cotinine in dusted latent fingermarks of smokers using hydrophobic silica particles and MS. Surf Interface Anal 42:339–343

    Google Scholar 

  63. Wolstenholme R, Bradshaw R, Clench MR, Francese S (2009) Study of latent fingermarks by matrix-assisted laser desorption/ionization mass spectrometry imaging of endogenous lipids. Rapid Commun Mass Spectrom 23:3031–3039

    Article  CAS  Google Scholar 

  64. Szynkowska MI, Czerski K, Rogowski J, Paryjczak T, Parczewski A (2009) ToF-SIMS application in the visualization and analysis of fingerprints after contact with amphetamine drugs. Forensic Sci Int 184(1/3):e24–e26

    Article  CAS  Google Scholar 

  65. Forbes TP, Sisco E (2014) Mass spectrometry detection and imaging of inorganic and organic explosive device signatures using desorption electro-flow focusing ionization. Anal Chem 86(15):7788–7797

    Article  CAS  Google Scholar 

  66. Lauzon N, Dufresne M, Chauhan V, Chaurand P (2015) Development of laser desorption imaging mass spectrometry methods to investigate the molecular composition of latent fingermarks. J Am Soc Mass Spectrom 26(6):878–886

    Article  CAS  Google Scholar 

  67. Tang XM, Huang LL, Zhang WY, Zhong HY (2015) Chemical imaging of latent fingerprints by mass spectrometry based on laser activated electron tunneling. Anal Chem 87(5):2693–2701

    Article  CAS  Google Scholar 

  68. Szynkowska MI, Czerski K, Rogowski J, Paryjczak T, Parczewski A (2010) Detection of exogenous contaminants of fingerprints using ToF-SIMS. Surf Interface Anal 42(5):393–397

    Article  CAS  Google Scholar 

  69. Forbes TP, Sisco E (2014) Chemical imaging of artificial fingerprints by desorption electro-flow focusing ionization mass spectrometry. Analyst 139:2982–2985

    Article  CAS  Google Scholar 

  70. Kaplan-Sandquist K, LeBeau MA, Miller ML (2014) Chemical analysis of pharmaceuticals and explosives in fingermarks using matrix-assisted laser desorption ionization/time-of-flight mass spectrometry. Forensic Sci Int 235:68–77

    Article  CAS  Google Scholar 

  71. Bradshaw R, Wolstenholmea R, Blackledge RD, Clench MR, Ferguson LS, Francese S (2011) A novel matrix-assisted laser desorption/ionization mass spectrometry imaging based methodology for the identification of sexual assault suspects. Rapid Commun Mass Spectrom 25(3):415–422

    Article  CAS  Google Scholar 

  72. Mirabelli MF, Chramow A, Cabral EC, Ifa DR (2013) Analysis of sexual assault evidence by desorption electrospray ionization mass spectrometry. J Mass Spectrom 48(7):774–778

    Article  CAS  Google Scholar 

  73. Green FM, Salter TL, Stokes P, Gilmore IS, O’Connor G (2010) Ambient mass spectrometry: advances and applications in forensics. Surf Interface Anal 42(5):347–357

    Article  CAS  Google Scholar 

  74. Morelato M, Beavis A, Kirkbride P, Roux C (2013) Forensic applications of desorption electrospray ionisation mass spectrometry (DESI-MS). Forensic Sci Int 226(1/3):10–21

    Article  CAS  Google Scholar 

  75. Ricci C, Chan KL, Andrew K, Sergei G (2006) Combining the tape-lift method and Fourier transform infrared spectroscopic imaging for forensic applications. Appl Spectrosc 60(9):1013–1021

    Article  CAS  Google Scholar 

  76. Ricci C, Bleay S, Kazarian SG (2007) Spectroscopic imaging of latent fingermarks collected with the aid of a gelatin tape. Anal Chem 79(15):5771–5776

    Article  CAS  Google Scholar 

  77. Crane NJ, Bartick EG, Perlman RS, Huffman S (2007) Infrared spectroscopic imaging for noninvasive detection of latent fingerprints. J Forensic Sci 52(1):48–53

    Article  CAS  Google Scholar 

  78. Tahtouh M, Despland P, Shimmon R, Kalman JR, Reedy BJ (2007) The application of infrared chemical imaging to the detection and enhancement of latent fingerprints: method optimization and further findings. J Forensic Sci 52(5):1089–1096

    Article  CAS  Google Scholar 

  79. Bhargava R, Perlman RS, Fernandez DC, Levin IW, Bartick EG (2009) Non-invasive detection of superimposed latent fingerprints and inter-ridge trace evidence by infrared spectroscopic imaging. Anal Bioanal Chem 394:2069–2075

    Article  CAS  Google Scholar 

  80. King RSP, Hallett PM, Foster D (2015) Seeing into the infrared: a novel IR fluorescent fingerprint powder. Forensic Sci Int 249:e21–e26

    Article  CAS  Google Scholar 

  81. Girod A, Xiao LN, Reedy B, Roux C, Weyermann C (2015) Fingermark initial composition and aging using Fourier transform infrared microscopy (μ-FTIR). Forensic Sci Int 254:185–196

    Article  CAS  Google Scholar 

  82. Mou Y, Rabalais JW (2009) Detection and identification of explosive particles in fingerprints using attenuated total reflection-Fourier transform infrared spectromicroscopy. J Forensic Sci 54(4):846–850

    Article  CAS  Google Scholar 

  83. Chen T, Schultz ZD, Levin IW (2009) Infrared spectroscopic imaging of latent fingerprints and associated forensic evidence. Analyst 134(9):1902–1904

    Article  CAS  Google Scholar 

  84. Banas A, Banas K, Breese MBH, Loke J, Heng Teo B, Lim SK (2012) Detection of microscopic particles present as contaminants in latent fingerprints by means of synchrotron radiation-based Fourier transform infra-red micro-imaging. Analyst 137(15):3459–3465

    Article  CAS  Google Scholar 

  85. Banas A, Banas K, Breese MBH, Loke J, Lim SK (2014) Spectroscopic detection of exogenous materials in latent fingerprints treated with powders and lifted off with adhesive tapes. Anal Bioanal Chem 406(17):4173–4181

    Article  CAS  Google Scholar 

  86. Ng PHR, Walker S, Tahtouh M, Reedy B (2009) Detection of illicit substances in fingerprints by infrared spectral imaging. Anal Bioanal Chem 394(8):2039–2048

    Article  CAS  Google Scholar 

  87. Ricci C, Kazarian SG (2010) Collection and detection of latent fingermarks contaminated with cosmetics on nonporous and porous surfaces. Surf Interface Anal 42(5):386–392

    Article  CAS  Google Scholar 

  88. Wetzel DL, Boawright MD, Bechard JB (2014) Forensic spectroscopic chemical imaging of fingerprints. Microscope 62(4):147–154

    CAS  Google Scholar 

  89. Cheng C, Kirkbride TE, Batchelder DN, Lacey RJ (1995) In situ detection and identification of trace explosives by Raman spectroscopy. J Forensic Sci 40(1):31–37

    Article  CAS  Google Scholar 

  90. Day JS, Edwards HGM, Dobrowski SA, Voice AM (2004) The detection of drugs of abuse in fingerprints using Raman spectroscopy I: latent fingerprints. Spectrochim Acta A 60:563–568

    Article  Google Scholar 

  91. Widjaja E (2009) Latent fingerprints analysis using tape-lift, Raman microscopy, and multivariate data analysis methods. Analyst 134:769–775

    Article  CAS  Google Scholar 

  92. Emmons ED, Tripathi A, Guicheteau JA, Christesen SD, Fountain AW (2009) Raman chemical imaging of explosive-contaminated fingerprints. Appl Spectrosc 63(11):1197–1203

    Article  CAS  Google Scholar 

  93. Song W, Mao Z, Liu X, Lu Y, Li Z, Zhao B, Lu L (2012) Detection of protein deposition within latent fingerprints by surface-enhanced Raman spectroscopy imaging. Nanoscale 4:2333–2338

    Article  CAS  Google Scholar 

  94. Wood M, Maynard P, Spindler X, Roux C, Lennard C (2013) Selective targeting of fingermarks using immunogenic techniques. Aus J Forensic Sci 45(2):211–226

    Article  Google Scholar 

  95. Saunders G, Cards C (1989) Proceedings of the 74th Conference of the International Association for Identification. Pensacola, 14–16

  96. Schnetz B, Margot P (2001) Latent fingermarks, colloidal gold and multimetal deposition (MMD) optimisation of the method. Forensic Sci Int 118(1):21–28

    Article  CAS  Google Scholar 

  97. Mayer G (2009) The chemical biology of aptamers. Angew Chem Int Ed 48:2672–2689

    Article  CAS  Google Scholar 

  98. Wood M (2014) A novel approach to latent fingermark detection using aptamer-based reagents. PhD Thesis: University of Technology, Sydney

  99. Li K, Qin W, Li F, Zhao X, Jiang B, Wang K, Deng S, Fan C, Li D (2013) Nanoplasmonic imaging of latent fingerprints and identification of cocaine. Angew Chem Int Ed 52:11542–11545

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is partially supported by the Nature Science Foundation of China (21222504, 21335001), the Nature Science Foundation of Zhejiang Province (LR14B050001), and the Fundamental Research Funds for Central Universities (2014XZZX003-04)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Su.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Additional information

Published in the topical collection featuring Young Investigators in Analytical and Bioanalytical Science with guest editors S. Daunert, A. Baeumner, S. Deo, J. Ruiz Encinar, and L. Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, B. Recent progress on fingerprint visualization and analysis by imaging ridge residue components. Anal Bioanal Chem 408, 2781–2791 (2016). https://doi.org/10.1007/s00216-015-9216-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-9216-y

Keywords

Navigation