Skip to main content
Log in

A plasma-assisted cataluminescence sensor for ethyne detection

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The detection of ethyne is crucial not only in environmental monitoring but also in process controlling and mechanism studies in industrial fields. Here, a new sensor based on the plasma-assisted cataluminescence (PA-CTL) has been fabricated for the detection of ethyne. Based on the assistance of low-temperature plasma (LTP) generated by air, which can enhance the catalytic ability of catalysts and the reactivity of the analytes, we observed significant cataluminescence (CTL) emissions on the surface of nanomaterials of Zn/SiO2. CTL emission has demonstrated to be affected by the type of discharge gases or the metal ions doping on the catalysts of SiO2. By the optimizations on the working temperature and gas flow rate of the air, a PA-CTL based sensor was constructed for the detection of ethyne. As demonstrated, this sensor exhibited a linearity of 11–1160 ng/mL (10–1000 ppm) with a limit of detection (LOD) of 5 ng/mL (5 ppm), and also showed good selectivity as well as good stability. This sensor is simple, low-cost, and could give stable responses for actual applications, which will expand the applications of CTL and show potentials in industrial substances detections.

A plasma-assisted cataluminescence gas sensor for ethyne detection

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. He Q, Zheng C, Liu H, Li B, Wang Y, Tittel FK. A near-infrared acetylene detection system based on a 1.534 mu m tunable diode laser and a miniature gas chamber. Infrared Phys Tech. 2016;75:93–9.

    Article  CAS  Google Scholar 

  2. Utsav KC, Nasir EF, Farooq A. A mid-infrared absorption diagnostic for acetylene detection. Appl Phys B–Lasers O. 2015;120(2):223–32.

    Article  Google Scholar 

  3. Brooke TY, Tokunaga AT, Weaver HA, Crovisier J, BockeleeMorvan D, Crisp D. Detection of acetylene in the infrared spectrum of comet Hyakutake. Nature. 1996;383(6601):606–8.

    Article  Google Scholar 

  4. Chai N, Naik SV, Kulatilaka WD, Laurendeau NM, Lucht RP, Roy S, et al. Detection of acetylene by electronic resonance-enhanced coherent anti-Stokes Raman scattering. Appl Phys B–Lasers O. 2007;87(4):731–7.

    Article  CAS  Google Scholar 

  5. Cao Y, Jin W, Ho HL, Qi L, Yang YH. Acetylene detection based on diode laser QEPAS: combined wavelength and residual amplitude modulation. Appl Phys B–Lasers O. 2012;109(2):359–66.

    Article  CAS  Google Scholar 

  6. Chen W, Liu B, Zhou H, Wang Y, Wang C. Diode laser-based photoacoustic spectroscopy detection of acetylene gas and its quantitative analysis. Eur Electr Power. 2012;22(2):226–34.

    Article  Google Scholar 

  7. Marshall ST, Schwartz DK, Medlin JW. Selective acetylene detection through surface modification of metal-insulator-semiconductor sensors with alkanethiolate monolayers. Sensor Actuat B–Chem. 2009;136(2):315–9.

    Article  CAS  Google Scholar 

  8. Luo L, Chen H, Zhang L, Xu K, Lv Y. A cataluminescence gas sensor for carbon tetrachloride based on nanosized ZnS. Anal Chim Acta. 2009;635(2):183–7.

    Article  CAS  Google Scholar 

  9. Zhang L, Rong W, Chen Y, Lu C, Zhao L. A novel acetone sensor utilizing cataluminescence on layered double oxide. Sensor Actuat B–Chem. 2014;205:82–7.

    Article  CAS  Google Scholar 

  10. Li Z, Xi W, Lu C. Hydrotalcite-assisted cataluminescence: a new approach for sensing mesityl oxide in aldol condensation of acetone. Sensor Actuat B–Chem. 2015;207:498–503.

    Article  CAS  Google Scholar 

  11. Tang J, Song H, Zeng B, Zhang L, Lv Y. Cataluminescence gas sensor for ketones based on nanosized NaYF4:Er. Sensor Actuat B–Chem. 2016;222:300–6.

    Article  CAS  Google Scholar 

  12. Li Z, Xi W, Lu C. Hydrotalcite-supported gold nanoparticle catalysts as a low temperature cataluminescence sensing platform. Sensor Actuat B–Chem. 2015;219:354–60.

    Article  CAS  Google Scholar 

  13. Tang F, Guo C, Chen J, Zhang X, Zhang S, Wang X. Cataluminescence-based sensors: principle, instrument, and application. Luminescence. 2015;30(7):919–39.

    Article  Google Scholar 

  14. Long Z, Ren H, Yang Y, Ouyang J, Na N. Recent development and application of cataluminescence-based sensors. Anal Bioanal Chem. 2016;408(11):2839–59.

    Article  CAS  Google Scholar 

  15. Wan X, Wu L, Zhang L, Song H, Lv Y. Novel metal-organic frameworks-based hydrogen sulfide cataluminescence sensors. Sensor Actuat B–Chem. 2015;220:614–21.

    Article  CAS  Google Scholar 

  16. Zeng B, Zhang L, Wan X, Song H, Lv Y. Fabrication of alpha-Fe2O3/g-C3N4 composites for cataluminescence sensing of H2S. Sensor Actuat B–Chem. 2015;211:370–6.

    Article  CAS  Google Scholar 

  17. Han J, Han F, Ouyang J, Li Q, Na N. Venturi-electrosonic spray ionization cataluminescence sensor array for saccharides detection. Anal Chem. 2013;85(16):7738–44.

    Article  CAS  Google Scholar 

  18. Wang S, Shi W, Lu C. Chemisorbed oxygen on the surface of catalyst-improved cataluminescence selectivity. Anal Chem. 2016;88(9):4987–94.

    Article  CAS  Google Scholar 

  19. Zhang L, Wang S, Lu C. Detection of oxygen vacancies in oxides by defect-dependent cataluminescence. Anal Chem. 2015;87(14):7313–20.

    Article  CAS  Google Scholar 

  20. Zhang L, Song H, Su Y, Lv Y. Advances in nanomaterial-assisted cataluminescence and its sensing applications. Trac-Trend Anal Chem. 2015;67:107–27.

    Article  CAS  Google Scholar 

  21. Zhang L, Chen Y, He N, Lu C. Acetone cataluminescence as an indicator for evaluation of heterogeneous base catalysts in biodiesel production. Anal Chem. 2014;86(1):870–5.

    Article  CAS  Google Scholar 

  22. Zhang R, Tejedor MI, Anderson MA, Paulose M, Grimes CA. Ethylene detection using nanoporous PtTiO2 coatings applied to magnetoelastic thick films. Sensors. 2002;2(8):331–8.

    Article  CAS  Google Scholar 

  23. Lupan O, Cretu V, Postica V, Ababii N, Polonskyi O, Kaidas V, et al. Enhanced ethanol vapor sensing performances of copper oxide nanocrystals with mixed phases. Sensor Actuat B–Chem. 2016;224:434–48.

    Article  CAS  Google Scholar 

  24. Mishra YK, Modi G, Cretu V, Postica V, Lupan O, Reimer T, et al. Direct growth of freestanding ZnO tetrapod networks for multifunctional applications in photocatalysis, UV photodetection, and gas sensing. ACS Appl Mater Interfaces. 2015;7(26):14303–16.

    Article  CAS  Google Scholar 

  25. Cretu V, Postica V, Mishra AK, Hoppe M, Tiginyanu I, Mishra YK, et al. Synthesis, characterization, and DFT studies of zinc-doped copper oxide nanocrystals for gas sensing applications. J Mater Chem A. 2016;4(17):6527–39.

    Article  CAS  Google Scholar 

  26. Paulowicz I, Hrkac V, Kaps S, Cretu V, Lupan O, Braniste T, et al. Three-dimensional SnO2 nanowire networks for multifunctional applications: from high-temperature stretchable ceramics to ultraresponsive sensors. Adv Electronic Mater. 2015;(1):1500081.

  27. Na N, Liu H, Han J, Han F, Liu H, Ouyang J. Plasma-assisted cataluminescence sensor array for gaseous hydrocarbons discrimination. Anal Chem. 2012;84(11):4830–6.

    Article  CAS  Google Scholar 

  28. Han J, Han F, Ouyang J, He L, Zhang Y, Na N. Low temperature CO sensor based on cataluminescence from plasma-assisted catalytic oxidation on Ag doped alkaline-earth nanomaterials. Nanoscale. 2014;6(6):3069–72.

    Article  CAS  Google Scholar 

  29. Han F, Yang Y, Han J, Jin O, Na N. Room-temperature cataluminescence from CO oxidation in a non-thermal plasma-assisted catalysis system. J Hazard Mater. 2015;293:1–6.

    Article  CAS  Google Scholar 

  30. Jia CJ, Schwickardi M, Weidenthaler C, Schmidt W, Korhonen S, Weckhuysen BM, et al. Co3O4–SiO2 nanocomposite: a very active catalyst for CO oxidation with unusual catalytic behavior. J Am Chem Soc. 2011;133(29):11279–88.

    Article  CAS  Google Scholar 

  31. Tendero C, Tixier C, Tristant P, Desmaison J, Leprince P. Atmospheric pressure plasmas: a review. Spectrochimica Acta B. 2006;61(1):2–30.

    Article  Google Scholar 

  32. Chen H, Lee H, Chen S, Chao Y, Chang M. Review of plasma catalysis on hydrocarbon reforming for hydrogen production–interaction, integration, and prospects. Appl Catal B-Environ. 2008;85(1/2):1–9.

    CAS  Google Scholar 

  33. Utsunomiya K, Nakagawa M, Sanari N, Kohata M, Tomiyama T, Yamamoto I, et al. Continuous determination and discrimination of mixed odor vapors by a new chemiluminescence-based sensor system. Sensor Actuat B–Chem. 1995;25(1/3):790–3.

    Article  CAS  Google Scholar 

  34. Na N, Zhang S, Wang X, Zhang X. Cataluminescence-based array imaging for high-throughput screening of heterogeneous catalysts. Anal Chem. 2009;81(6):2092–7.

    Article  CAS  Google Scholar 

  35. Guo Z, Jiang Z-W, Chen X, Sun B, Li M-Q, Liu J-H, et al. Novel cocoon-like Au/La2O3 nanomaterials: synthesis and their ultra-enhanced cataluminescence performance to volatile organic compounds. J Mater Chem. 2011;21(6):1874–9.

    Article  CAS  Google Scholar 

  36. Weng Y, Zhang L, Zhu W, Lv Y. One-step facile synthesis of coral-like Zn-doped SnO2 and its cataluminescence sensing of 2-butanone. J Mater Chem A. 2015;3(13):7132–8.

    Article  CAS  Google Scholar 

  37. Fan H, Cheng Y, Gu C, Zhou K. A novel gas sensor of formaldehyde and ammonia based on cross sensitivity of cataluminescence on nano-Ti3SnLa2O11. Sensor Actuat B–Chem. 2016;223:921–6.

    Article  CAS  Google Scholar 

  38. Green O, Smith NA, Ellis AB, Burstyn JN. AgBF4-impregnated poly(vinyl phenyl ketone): an ethylene sensing film. J Am Chem Soc. 2004;126(19):5952–3.

    Article  CAS  Google Scholar 

  39. Santiago Cintron M, Green O, Burstyn JN. Ethylene sensing by silver(I) salt-impregnated luminescent films. Inorg Chem. 2012;51(5):2737–46.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support from the National Nature Science Foundation of China (21422503, 21675015, 21475011), Foundation for the Author of National Excellent Doctoral Dissertation of PR China (201221), Fundamental Research Funds for the Central Universities, and Beijing Hope Run Special Fund of Cancer Foundation of China

Author Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Na Na.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Published in the topical collection Highlights of Analytical Chemical Luminescence with guest editors Aldo Roda, Hua Cui, and Chao Lu.

Conghu Peng and Kang Shao contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 258 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, C., Shao, K., Long, Z. et al. A plasma-assisted cataluminescence sensor for ethyne detection. Anal Bioanal Chem 408, 8843–8850 (2016). https://doi.org/10.1007/s00216-016-9908-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9908-y

Keywords

Navigation