Skip to main content
Log in

Fabrication of novel surface-imprinted magnetic graphene oxide-grafted cellulose nanocrystals for selective extraction and fast adsorption of fluoroquinolones from water

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A novel adsorbent based on the surface of magnetic graphene oxide-grafted cellulose nanocrystal molecularly imprinted polymers (Mag@GO-g-CNCs@MIPs) was developed for the selective extraction and fast adsorption of fluoroquinolones (FQs) from river water samples. Cellulose nanocrystals (CNCs) were grafted onto activated graphene oxide (GO), and the surfaces of the obtained magnetic GO-g-CNC particles were molecularly imprinted with polymers using ofloxacin (OFX) as a template molecule and methacrylic acid (MAA) as a functional monomer. The resulting Mag@GO-g-CNCs@MIP material was characterized by Fourier transform infrared spectroscopy, transmission electron microscopy, scanning electron microscopy, vibrating sample magnetometry, and X-ray photoelectron spectroscopy. Under optimum adsorption conditions, the Mag@GO-g-CNCs@MIPs with large specific surface area were easily collected and separated using an external magnetic field. Mag@GO-g-CNCs@MIPs exhibited an ultra-fast adsorption profile for FQs (5 min to achieve the maximum adsorption capacity of 74 mg/g), with imprinting factor values ranging from 1.5 to 3.1. High recognition selectivity towards nine FQs from real river water samples was established through coupling with high-performance liquid chromatography (HPLC), and the recovery of samples spiked with nine FQs was found to be in the range of 79.2–96.1%, with a detection limit ranging from 6.5 to 51 ng/g. Moreover, the data obtained adhered to the Freundlich isotherm model, and the adsorption kinetics followed a pseudo-second-order model. Finally, the Mag@GO-g-CNCs@MIPs could be regenerated and reused for seven consecutive cycles with only a 13% drop in adsorption capacity, indicating its effective application as a new, reusable, and selective adsorbent for the enrichment and separation of FQs from aqueous solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Arabi M, Ostovan A, Ghaedi M, Purkait MK. Novel strategy for synthesis of magnetic dummy molecularly imprinted nanoparticles based on functionalized silica as an efficient sorbent for the determination of acrylamide in potato chips: optimization by experimental design methodology. Talanta. 2016;154:526–32.

    Article  CAS  Google Scholar 

  2. Gao S-P, Zhang X, Zhang L-S, Huang Y-P, Liu Z-S. Molecularly imprinted polymer prepared with polyhedral oligomeric silsesquioxane through reversible addition–fragmentation chain transfer polymerization. Anal Bioanal Chem. 2017;409(15):3741–3748.

  3. Wei S, Jakusch M, Mizaikoff B. Capturing molecules with templated materials—analysis and rational design of molecularly imprinted polymers. Anal Chim Acta. 2006;578(1):50–8.

    Article  CAS  Google Scholar 

  4. Wulff G. Molecular imprinting in cross-linked materials with the aid of molecular templates—a way towards artificial antibodies. Angew Chem Int Ed. 1995;34(17):1812–32.

    Article  CAS  Google Scholar 

  5. Xu C, Uddin KMA, Shen X, Jayawardena HSN, Yan M, Ye L. Photoconjugation of molecularly imprinted polymer with magnetic nanoparticles. ACS Appl Mat Interfaces. 2013;5(11):5208–13.

    Article  CAS  Google Scholar 

  6. Hu C, Deng J, Zhao Y, Xia L, Huang K, Ju S, et al. A novel core–shell magnetic nano-sorbent with surface molecularly imprinted polymer coating for the selective solid phase extraction of dimetridazole. Food Chem. 2014;158:366–73.

    Article  CAS  Google Scholar 

  7. Hao T, Wei X, Nie Y, Xu Y, Yan Y, Zhou Z. An eco-friendly molecularly imprinted fluorescence composite material based on carbon dots for fluorescent detection of 4-nitrophenol. Microchim Acta. 2016;183(7):2197–203.

    Article  CAS  Google Scholar 

  8. Bures P, Huang Y, Oral E, Peppas NA. Surface modifications and molecular imprinting of polymers in medical and pharmaceutical applications. J Control Release. 2001;72(1):25–33.

    Article  CAS  Google Scholar 

  9. Chen L, Xu S, Li J. Recent advances in molecular imprinting technology: current status, challenges and highlighted applications. Chem Soc Rev. 2011;40(5):2922–42.

    Article  CAS  Google Scholar 

  10. Ahmadi M, Madrakian T, Afkhami A. Solid phase extraction of amoxicillin using dibenzo-18-crown-6 modified magnetic-multiwalled carbon nanotubes prior to its spectrophotometric determination. Talanta. 2016;148:122–8.

    Article  CAS  Google Scholar 

  11. Wang Y, Wang Y, Ouyang X, Yang L. Surface-imprinted magnetic carboxylated cellulose nanocrystals for the highly selective extraction of six fluoroquinolones from egg samples. ACS Appl Mat Interfaces. 2017;9(2):1759–69.

    Article  CAS  Google Scholar 

  12. Fan L, Luo C, Lv Z, Lu F, Qiu H. Removal of Ag+ from water environment using a novel magnetic thiourea-chitosan imprinted Ag+. J Hazard Mater. 2011;194:193–201.

    Article  CAS  Google Scholar 

  13. Fan J, Liao D, Xie Y, Zheng B, Yu J, Cao Y, Zhang X, Peng H. A molecular imprinted polymer on the surface of superparamagnetic Fe3O4–graphene oxide (MIP@Fe3O4@GO) for simultaneous recognition and enrichment of evodiamine and rutaecarpine in Evodiae fructus. J Appl Polym Sci. 2017;134(7). https://doi.org/10.1002/app.44465

  14. Pan S, Zhou L, Zhao Y, Chen X, Shen H, Cai M, et al. Amine-functional magnetic polymer modified graphene oxide as magnetic solid-phase extraction materials combined with liquid chromatography–tandem mass spectrometry for chlorophenols analysis in environmental water. J Chromatogr A. 2014;1362:34–42.

    Article  CAS  Google Scholar 

  15. Kuilla T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH. Recent advances in graphene based polymer composites. Prog Polym Sci. 2010;35(11):1350–75.

    Article  CAS  Google Scholar 

  16. Dreyer DR, Park S, Bielawski CW, Ruoff RS. The chemistry of graphene oxide. Chem Soc Rev. 2010;39(1):228–40.

    Article  CAS  Google Scholar 

  17. Hu Y, Tang L, Lu Q, Wang S, Chen X, Huang B. Preparation of cellulose nanocrystals and carboxylated cellulose nanocrystals from borer powder of bamboo. Cellulose. 2014;21(3):1611–8.

    Article  CAS  Google Scholar 

  18. Grishkewich N, Mohammed N, Tang J, Tam KC. Recent advances in the application of cellulose nanocrystals. Curr Opin Colloid Interface Sci. 2017;29:32–45.

  19. Habibi Y, Lucia LA, Rojas OJ. Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev. 2010;110(6):3479–500.

    Article  CAS  Google Scholar 

  20. Eyley S, Thielemans W. Surface modification of cellulose nanocrystals. Nano. 2014;6(14):7764–79.

    CAS  Google Scholar 

  21. Akhlaghi SP, Tiong D, Berry RM, Tam KC. Comparative release studies of two cationic model drugs from different cellulose nanocrystal derivatives. Eur J Pharm Biopharm. 2014;88(1):207–15.

    Article  CAS  Google Scholar 

  22. Uth C, Zielonka S, Hoerner S, Rasche N, Plog A, Orelma H, et al. A chemoenzymatic approach to protein immobilization onto crystalline cellulose nanoscaffolds. Angew Chem Int Ed. 2014;53(46):12618–23.

    CAS  Google Scholar 

  23. Bolloli M, Antonelli C, Molméret Y, Alloin F, Iojoiu C, Sanchez J. Nanocomposite poly (vynilidene fluoride)/nanocrystalline cellulose porous membranes as separators for lithium-ion batteries. Electrochim Acta. 2016;214:38–48.

    Article  CAS  Google Scholar 

  24. Vandamme D, Eyley S, Van den Mooter G, Muylaert K, Thielemans W. Highly charged cellulose-based nanocrystals as flocculants for harvesting Chlorella vulgaris. Bioresour Technol. 2015;194:270–5.

    Article  CAS  Google Scholar 

  25. Batmaz R, Mohammed N, Zaman M, Minhas G, Berry RM, Tam KC. Cellulose nanocrystals as promising adsorbents for the removal of cationic dyes. Cellulose. 2014;21(3):1655–65.

    Article  CAS  Google Scholar 

  26. Liu C, Jin R, Ouyang X, Wang Y. Adsorption behavior of carboxylated cellulose nanocrystal—polyethyleneimine composite for removal of Cr (VI) ions. Appl Surf Sci. 2017;408:77–87.

    Article  CAS  Google Scholar 

  27. Wang N, Jin R, Omer A, Ouyang X. Adsorption of Pb (II) from fish sauce using carboxylated cellulose nanocrystal: isotherm, kinetics, and thermodynamic studies. Int J Biol Macromol. 2017;102:232–40.

    Article  CAS  Google Scholar 

  28. Wang H, Liu Y, Wei S, Yao S, Zhang J, Huang H. Selective extraction and determination of fluoroquinolones in bovine milk samples with montmorillonite magnetic molecularly imprinted polymers and capillary electrophoresis. Anal Bioanal Chem. 2016;408(2):589–98.

    Article  CAS  Google Scholar 

  29. Blesa J, Silva LJ, Lino CM, Font G, Pena A. Comparison of three solid-phase extraction processes in quantification of ciprofloxacin and enrofloxacin in pork meat. J Sep Sci. 2012;35(7):832–8.

    Article  CAS  Google Scholar 

  30. He X, Wang GN, Yang K, Liu HZ, Wu XJ, Wang JP. Magnetic graphene dispersive solid phase extraction combining high performance liquid chromatography for determination of fluoroquinolones in foods. Food Chem. 2017;221:1226–31.

    Article  CAS  Google Scholar 

  31. Wang F, Yang B, Wang H, Song Q, Tan F, Cao Y. Removal of ciprofloxacin from aqueous solution by a magnetic chitosan grafted graphene oxide composite. J Mol Liq. 2016;222:188–94.

    Article  CAS  Google Scholar 

  32. Eldin MM, Omer A, Wassel M, Tamer T, Abd-Elmonem M, Ibrahim S. Novel smart pH sensitive chitosan grafted alginate hydrogel microcapsules for oral protein delivery: II. Evaluation of the swelling behavior. Int J Pharm Pharm Sci. 2015;7(10):331–7.

    Google Scholar 

  33. Narasimhan K, Wingard LB. p-Benzoquinone activation of metal oxide electrodes for attachment of enzymes. Enzym Microb Technol. 1985;7(6):283–6.

    Article  CAS  Google Scholar 

  34. Eldin MM, Seuror E, Nasr M, El-Aassar M, Tieama H. Affinity covalent immobilization of glucoamylase onto ρ-benzoquinone activated alginate beads: I. Beads preparation and characterization. Appl Biochem Biotechnol. 2011;164(1):10–22.

    Article  Google Scholar 

  35. He Y, Huang Y, Jin Y, Liu X, Liu G, Zhao R. Well-defined nanostructured surface-imprinted polymers for highly selective magnetic separation of fluoroquinolones in human urine. ACS Appl Mat Interfaces. 2014;6(12):9634–42.

    Article  CAS  Google Scholar 

  36. Gao R, Cui X, Hao Y, Zhang L, Liu D, Tang Y. A highly-efficient imprinted magnetic nanoparticle for selective separation and detection of 17β-estradiol in milk. Food Chem. 2016;194:1040–7.

    Article  CAS  Google Scholar 

  37. Lu P, Hsieh Y-L. Preparation and properties of cellulose nanocrystals: rods, spheres, and network. Carbohydr Polym. 2010;82(2):329–36.

    Article  Google Scholar 

  38. Xiao D, Dramou P, Xiong N, He H, Yuan D, Dai H, et al. Preparation of molecularly imprinted polymers on the surface of magnetic carbon nanotubes with a pseudo template for rapid simultaneous extraction of four fluoroquinolones in egg samples. Analyst. 2013;138(11):3287–96.

    Article  CAS  Google Scholar 

  39. Xiao D, Wang C, Dai H, Peng J, He J, Zhang K, et al. Applications of magnetic surface imprinted materials for solid phase extraction of levofloxacin in serum samples. J Mol Recognit. 2015;28(5):277–84.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the support of the National Natural Science Foundation of China (21476212) and the Foundation of Science and Technology Department of Zhejiang Province (2017C33126).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-kun Ouyang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 1579 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, N., Wang, YF., Omer, A.M. et al. Fabrication of novel surface-imprinted magnetic graphene oxide-grafted cellulose nanocrystals for selective extraction and fast adsorption of fluoroquinolones from water. Anal Bioanal Chem 409, 6643–6653 (2017). https://doi.org/10.1007/s00216-017-0619-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0619-9

Keywords

Navigation