Skip to main content
Log in

ICP–MS with hexapole collision cell for isotope ratio measurements of Ca, Fe, and Se

  • Original paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

To avoid mass interferences on analyte ions caused by argon ions and argon molecular ions via reactions with collision gases, an rf hexapole filled with helium and hydrogen has been used in inductively coupled plasma mass spectrometry (ICP–MS), and its performance has been studied. Up to tenfold improvement in sensitivity was observed for heavy elements (m > 100 u), because of better ion transmission through the hexapole ion guide. A reduction of argon ions Ar+ and the molecular ions of argon ArX+ (X = O, Ar) by up to three orders of magnitude was achieved in a hexapole collision cell of an ICP–MS (“Platform ICP”, Micromass, Manchester, UK) as a result of gas-phase reactions with hydrogen when the hexapole bias (HB) was set to 0 V; at an HB of 1.6 V argon, and argon-based ions of masses 40 u, 56 u, and 80 u, were reduced by approximately four, two, and five orders of magnitude, respectively. The signal-to-noise ratio 80Se/ 40Ar2 + was improved by more than five orders of magnitude under optimized experimental conditions. Dependence of mass discrimination on collision-cell properties was studied in the mass range 10 u (boron) to 238 u (uranium). Isotopic analysis of the elements affected by mass-spectrometric interference, Ca, Fe, and Se, was performed using a Meinhard nebulizer and an ultrasonic nebulizer (USN). The measured isotope ratios were comparable with tabulated values from IUPAC. Precision of 0.26%, 0.19%, and 0.12%, respectively, and accuracy of 0.13% 0.25%, and 0.92%, respectively, was achieved for isotope ratios 44Ca/ 40Ca and 56Fe/57Fe in 10 μg L–1 solution nebulized by means of a USN and for 78Se/80Se in 100 μg L–1 solution nebulized by means of a Meinhard nebulizer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Received: 15 December 2000 / Revised: 26 March 2001 / Accepted: 27 March 2001

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boulyga, S., Becker, J. ICP–MS with hexapole collision cell for isotope ratio measurements of Ca, Fe, and Se. Fresenius J Anal Chem 370, 618–623 (2001). https://doi.org/10.1007/s002160100851

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s002160100851

Keywords

Navigation