Skip to main content
Log in

Hexacyanoferrate-based composite ion-sensitive electrodes for voltammetry

  • Original Paper
  • General Chemistry
  • Published:
Fresenius' Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

Composite electrodes made of graphite, paraffin and metal hexacyanoferrates exhibit a voltammetric response of the hexacyanoferrate ions, the potential of which depends linearly on the logarithm of concentration of alkali and alkaline-earth metal ions. This behaviour has been observed on account of the fact that the electrochemical reaction is accompanied by an exchange of these ions between the solution and the zeolitic lattice of the hexacyanoferrates for charge compensation. The voltammetric determination of the formal potential of these electrodes in a solution allows the quantitative analysis of the ions which are exchanged between the metal hexacyanoferrates and the aqueous solutions. Iron(III), copper(II), silver(I), nickel(II) and cadmium(II) hexacyanoferrates have been studied for the determination of H+, Li+, Na+, K+, Rb+, Cs+, NH4su{+}, Mg2+, Ca2+ and Ba2+. In some cases, the selectivity constants are as low as 3·10−4, or even so small that their exact value is inaccessible. Electrodes made of iron (III), copper (II), silver (I), nickel (II) and cadmium (II) hexacyanoferrates are most suitable for the determination of potassium ions. Electrodes with nickel (II) and cadmium (II) hexacyanoferrates are also suitable for the determination of caesium ions. The working range of the electrodes also depends on the conductivity of the solutions and can range from 10−5 to 1 moll−1. Typical standard deviations of the potential measurements are 3 mV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu TR, Ji GL (1993) Electrochemical methods in soil and water research. Pergamon Press, Oxford

    Google Scholar 

  2. Khavas E (Havas J) (1988) Iono-i molekuljarno-selektivnyje electrody v biologicheskikh sistemakh. Mir, Moskva

  3. Baucke FGK (1994) Fresenius J Anal Chem 349: 582–596

    Article  CAS  Google Scholar 

  4. Ludi A, Güdel HU (1973) Struct Bonding 14: 1–27

    Article  CAS  Google Scholar 

  5. Seifer GB (1962) Zh neorgan khimii 7: 1208–1209

    CAS  Google Scholar 

  6. Sharpe AG (1976) The chemistry of cyano complexes of the transition metals. Academic Press, London

    Google Scholar 

  7. Buser HJ, Schwarzenbach D, Petter W. Ludi A (1977) Inorg Chem 16: 2704–2710

    Article  CAS  Google Scholar 

  8. Herren F, Fischer P, Ludi A, Hälg W (1980) Inorg Chem 19: 956–959

    Article  CAS  Google Scholar 

  9. Dostal A, Meyer B, Scholz F, Schröder U, Bond AM, Marken F, Shaw SJ (1995) J Phys Chem 99: 2096–2103

    Article  CAS  Google Scholar 

  10. Prout WE, Russel ER, Groh HJ (1965) J Inorg Nucl Chem 27: 473–479

    Article  CAS  Google Scholar 

  11. Ceranic T, Trifunovic D, Adamovic R (1978) Z Naturforsch 33b: 1099–1101

    CAS  Google Scholar 

  12. Amos LJ, Duggal A, Mirsky EJ, Ragonesi, Bocarsly AB, Fitzgerald-Bocarsly PA (1988) Anal Chem 60: 245–249

    Article  CAS  Google Scholar 

  13. Sinha S, Humphrey BD, Bocarsly AB (1984) Inorg Chem 23: 203–212

    Article  CAS  Google Scholar 

  14. Schneemeyer LF, Spengler SE, Murphy DW (1985) Inorg Chem 24: 344–346

    Article  Google Scholar 

  15. Moon SB, Xidis A, Neff VD (1993) J Phys Chem 97: 1634–1638

    Article  CAS  Google Scholar 

  16. Engel D (1988) PhD thesis, University of Frankfurt am Main, Germany

    Google Scholar 

  17. Engel D, Grabner EW (1988) Z Phys Chem 151–168

  18. Engel D, Grabner EW (1985) Ber Bunsenges Phys Chem 89: 982–986

    CAS  Google Scholar 

  19. Cox JA, Jaworski RK, Kulesza PJ (1991) Electroanalysis 3: 869–877

    Article  CAS  Google Scholar 

  20. Scholz F, Lange B (1992) Trends Anal Chem 11: 359–367

    Article  CAS  Google Scholar 

  21. Scholz F, Meyer B (1994) Chem Soc Rev 23: 341–347

    Article  CAS  Google Scholar 

  22. Dostal A, Schröder U, Scholz F (1995) Inorg Chem 34: 1711–1717

    Article  CAS  Google Scholar 

  23. Scholz F, Düssel H, Meyer B (1993) Fresenius J Anal Chem 347: 458–459

    Article  CAS  Google Scholar 

  24. Düssel H, Komorsky-Lovric Š, Scholz F (1995) Electroanalysis (in press)

  25. (1932) Gmelins Handbuch der Anorganischen Chemie, 8th edn, vol 59 B [Fe]. Verlag Chemie, Berlin

  26. Shriver YDF, Shriver SA, Anderson SE (1965) Inorg Chem 4: 725–730

    Article  CAS  Google Scholar 

  27. Ludi A, Güdel HU, Dvorak V (1967) Helv Chim Acta 50: 2035–2039

    Article  Google Scholar 

  28. Ammann D, Chao P, Simon W (1987) Neurosci Letters 74: 221–226

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to the memory of PD Dr. habil. Rainer Garten who passed away so early and has yet contributed so much to contemporary analytical chemistry

Rights and permissions

Reprints and permissions

About this article

Cite this article

Düssel, H., Dostal, A. & Scholz, F. Hexacyanoferrate-based composite ion-sensitive electrodes for voltammetry. Fresenius J Anal Chem 355, 21–28 (1996). https://doi.org/10.1007/s0021663550021

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s0021663550021

Keywords

Navigation