Skip to main content
Log in

Light-induced quality changes in plain yoghurt packed in polylactate and polystyrene

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

The potential of using materials based on polylactate (PLA) for packaging of plain yoghurt has been demonstrated in the present study. Plain yoghurt (3.5% fat) was stored for 5 weeks in PLA or polystyrene (PS) cups under fluorescent light (3500 lux) or in darkness. Quality changes were studied by determination of color stability, formation of lipid hydroperoxides, development of volatile products (secondary oxidation products and release of styrene and lactate from the packaging materials) and degradation of β-carotene, and riboflavin was determined. For light-exposed yoghurts, PLA was at least as effective in preventing color changes and formation of lipid hydroperoxides as PS. During storage under fluorescence light, concentrations of n-hexanal, n-heptanal, n-octanal, n-nonanal, 3-methyl-butanal, dimethyl disulfide, and 1-octen-3-ol were lower in yoghurts packed in PLA than in PS. Furthermore, losses of riboflavin and β-carotene were less in light-exposed yoghurt packed in PLA than in PS. The amount of styrene in yoghurt stored in PS cups increased during storage, whereas lactate was not found in yoghurts stored in PLA. Practically no development of lipid hydroperoxides and secondary oxidation products or loss of riboflavin and β-carotene were observed in yoghurts stored in darkness. Thus, it can be concluded that light exposure reduced the quality of plain yoghurt and that PLA provided a better protection against photo-degradation processes than PS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2a, b.
Fig. 3a, b.
Fig. 4.
Fig. 5a, b.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

References

  1. Bosset JO, Sieber R, Gallman PU (1994) Influence of light transmittance of packaging materials on the shelf life of milk and milk products—a review. In: Mathlouthi M (ed) Food packaging and preservation, Blackie, Glasgow, pp 222–268

  2. Bosset JO, Flückinger E (1986) Dtsch Milchwirtsch 29:908–914

    Google Scholar 

  3. Bosset JO, Flückinger E (1989) Lebensm Wiss Technol 22:292–300

    Google Scholar 

  4. Deger D, Ashoor SH (1987) J Dairy Sci 70:1371–1376

    Google Scholar 

  5. Kristensen D, Orlien V, Mortensen G, Brockhoff P, Skibsted LH (2000) Int Dairy J 10:95–103

    Article  CAS  Google Scholar 

  6. Mortensen G, Sørensen J, Stapelfeldt H (2002) J Agric Food Chem 50:4364–4370

    Article  CAS  PubMed  Google Scholar 

  7. Mortensen G, Sørensen J, Stapelfeldt H (2003) Eur Food Res Technol 216:57-62

    CAS  Google Scholar 

  8. Mortensen G, Sørensen J, Stapelfeldt H (2003) Eur Food Res Technol 216:93-98

    CAS  Google Scholar 

  9. Juric M, Bertelsen G, Petersen MA (2002) Int Dairy J 13:239-249

    Article  Google Scholar 

  10. Tagliaferri E (1989) Trav Chim Aliment Hyg 80:77–86

    CAS  Google Scholar 

  11. Bosset JO, Gauch R (1988) Trav Chim Aliment Hyg 79:165–174

    CAS  Google Scholar 

  12. Daget N (1989) Trav Chim Aliment Hyg 80:87–90

    CAS  Google Scholar 

  13. Bekbölet (1990) J Food Prot 53:430–440

    Google Scholar 

  14. Krochta JM, DeMulder Johnston CLC (1996) Biodegradable polymers from agricultural products. In: Fuller G, McKeon TA, Bills DD (eds) Agricultural materials and renewable resources, ACS Symp Ser 647.ACS, Washington D.C., pp 120–140

  15. Sinclair RG (1996) JMS Pure Appl Chem A33:585–597

    CAS  Google Scholar 

  16. Petersen K, Nielsen PV, Olsen MB (2001) Starch/Stärke 53:356–361

    Google Scholar 

  17. Stratton K (1998) Food Eng Int October:43–47

    Google Scholar 

  18. Bastioli C (2000) Global status of the production of biobased packaging materials. In: Weber CJ (ed) Conference Proceedings, The Food Biopack Conference, August 27–29, 2000. The Royal Veterinary and Agricultural University, Department of Dairy and Food Science, Frederiksberg, Denmark, pp 2–7

  19. Junkkarinen L (2002) Personal communication. Valio Ltd, Helsinki, Finland

  20. Haugaard VK, Festersen RM, Bertelsen G (2001) Light-induced changes in orange juice. In: Søren Østergaard (ed) Conferences Proceedings. 2nd Nordic Foodpack Conference, Stavanger, September 5–7, 2001. Nordic Foodpack, Taastrup, Denmark

  21. Haugaard VK, Weber CJ, Danielsen B, Bertelsen G (2002) Eur Food Res Technol 214:423–428

    Article  CAS  Google Scholar 

  22. Haugaard VK, Danielsen B, Bertelsen G (2003) Eur Food Res Technol 216:233-240

    CAS  Google Scholar 

  23. Østdal H, Andersen JA, Nielsen JH (2000) J Agric Food Chem 48:5588–5592

    Article  PubMed  Google Scholar 

  24. Butriss JK, Diplock AT (1984). High performance liquid chromatographic methods for vitamin E in tissues. In: Parker LE (ed) Methods in enzymology, Academic, New York, Chap. 105, pp131–138

  25. AOAC 970.65 (1990) Official methods of analysis, 15th edn. Association of Official Analytical Chemists, Arlington, Va., pp. 1052–1054

  26. Augustin J (1994) Vitamin analysis. In: Nielsen S (ed) Introduction to the chemical analysis of food. Jones and Barlette, Boston, Chap. 17, pp 249–260

  27. SAS (1996) SAS Vers 6.12, SAS institute, Cary, N.C. USA

  28. Camo (1999) Camo Vers 7.5, Camo A/S, Norway

  29. Weichhold U, Seiler H, Busse M, Klostermeyer H (1988) Dtsch Milchwirtsch 46:1671–1675

    Google Scholar 

  30. Pesek CA, Warthesen JJ (1987) J Food Sci 52:744–746

    CAS  Google Scholar 

  31. Lennersten M, Lingnert H (2000) Lebensm Wiss Technol 33:253–260

    Article  Google Scholar 

  32. Skibsted LH (2000) Bull Int Dairy Fed 346:4–9

    CAS  Google Scholar 

  33. Przybylski R, Eskin NAM (1995). Methods to measure volatile compounds and the flavor significance of volatile compounds. In: Warner K, Eskin NAM (eds) Methods to assess quality and stability of oils and fat-containing foods. American Oil Chemists´ Society, Champaign, Ill., pp 107–133

  34. Jensen K, Petersen MA, Poll L, Brockhoff PB (1999) J Agric Food Chem 47:1145–1149

    Article  CAS  PubMed  Google Scholar 

  35. Linssen JPM, Janssens JLGM, Reitsma JCE, Roozen JP (1995) Taste recognition threshold concentrations of styrene in foods and food models. In: Ackermann P, Jägerstad M, Ohlsson T (eds) Food and packaging materials—chemical interactions, The Royal Society of Chemistry, Cambridge, UK, pp 74–78

  36. EEC (1990) 90/128/EEC Plastics: monomers

  37. Conn RE, Kolstad JJ, Borzelleca JF, Dixler DS, Filer LJ, LaDu BN, Pariza MW (1995) Food Chem Toxicol 33:273–283

    Article  CAS  PubMed  Google Scholar 

  38. Sattar A, deMan JM, Alexander JC (1977) Can Inst Food Sci Technol J 10:56–60

    CAS  Google Scholar 

  39. Sattar A, deMan JM, Alexander JC (1977) Can Inst Food Sci Technol J 10:61–64

    CAS  Google Scholar 

  40. Christy GE, Amantea GF, Irwin RET (1981) Can Inst Food Sci Technol J 14:135–138

    CAS  Google Scholar 

  41. Schröder MJA (1982) J Dairy Res 49:407–424

    Google Scholar 

  42. Desarzens C, Bosset JO, Blanck B (1983) Lebensm Wiss Technol 17:241–247

    Google Scholar 

  43. Fanelli AJ, Burlew JV, Gabriel MK (1985) J Food Prot 48:112–117

    CAS  Google Scholar 

  44. Hoskin JC (1988) J Food Prot 51:19–23

    CAS  Google Scholar 

  45. Palanuk SL, Warthesen JJ, Smith DE (1988) J Food Sci 53:436–438

    CAS  Google Scholar 

  46. Hoskin JC (1989) Cultural Dairy Prod J Feb:14–15

    Google Scholar 

  47. Marsh R, Kajda P, Ryley J (1994) Nahrung 5:527–532

    Google Scholar 

  48. Lee KH, Jung MY, Kim SY (1998) J Agri Food Chem 46:407–410

    Article  CAS  Google Scholar 

  49. Hansen E, Skibsted LH (2000) J Agric Food Chem 48:3090–3094

    Article  CAS  PubMed  Google Scholar 

  50. Rothe M, Wölm G, Tunger L, Siebert HJ (1972) Nahrung 16:483–495

    CAS  PubMed  Google Scholar 

  51. Gemert LJV, Nettenbreijer AH (1977). Compilation of odour threshold values in air and water. National Institute for Water Supply, Voorburg, Netherlands; Central Institute for Nutrition and Food Research TNO, Zeist, Netherlands

  52. Pyysalo T, Suihko M, Honkanen E (1977) Lebensm Wiss Technol 10:36–39

    CAS  Google Scholar 

  53. Fazzalari FA (1978) Compilation of odor and taste threshold values data. American Society for Testing Materials, Philadelphia

  54. Hansen M, Buttery RG, Stern DJ, Cantwell MI, Ling LC (1992) J Agric Food Chem 40:850–852

    CAS  Google Scholar 

  55. Larsen M, Poll L (1992) Z Lebensm Unters Forsch 195:120–123

    CAS  Google Scholar 

  56. Bergmann JF (1973) Z Lebensm Unters Forsch 151:310–317

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge Bente Danielsen and Mehdi D. Farahani, laboratory technicians, for technical assistance; Arla Foods amba, Brabrand, for providing yoghurt and PS cups and Peter Togeskov, Amcor Flexible, Lyngby, for technical advise and providing the laminates used for lids.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eleonora Miquel Becker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frederiksen, C.S., Haugaard, V.K., Poll, L. et al. Light-induced quality changes in plain yoghurt packed in polylactate and polystyrene. Eur Food Res Technol 217, 61–69 (2003). https://doi.org/10.1007/s00217-003-0722-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-003-0722-3

Keywords

Navigation