Skip to main content
Log in

An approach to studying the effect of different bread improvers on the staling of pre-baked frozen bread

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

The usefulness of different bread improvers (α-amylase, sourdough, κ-carrageenan, hydroxypropylmethylcellulose) in an interrupted baking process was evaluated by using a differential scanning calorimeter as an oven. The thermal transitions of the wheat starch produced during the part-baking process, frozen storage at –18 °C, finish baking and aging of the baked dough at 4 °C were registered. The thermal properties of wheat starch during gelatinisation measured by differential scanning calorimetry were slightly affected by the dough formulation: only the peak temperature and the onset temperature underwent an increase, whereas the gelatinisation enthalpy decreased. The presence of the bread improvers minimised the negative effect of the frozen storage observed in the control sample, which showed an increase in the retrogradation temperature range. Concerning the aging of the baked dough after freezing and re-baking, all the improvers decreased the retrogradation enthalpy of the amylopectin, retarding the staling. Bread improvers can act effectively in the interrupted baking processes with frozen storage of the part-baked breads.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Martinez-Anaya MA, Jiménez T (1997) Z Lebensm Unters Forsch 205:569–583

    Google Scholar 

  2. Twillman TJ, White PJ (1988) Cereal Chem 65:253–257

    CAS  Google Scholar 

  3. Stampfli L, Nersten B (1995) Food Chem 52:353–360

    Article  CAS  Google Scholar 

  4. Armero E, Collar C (1996) Food Sci Technol Int 2:323–333

    CAS  Google Scholar 

  5. Davidou S, Le Meste M, Debever E, Bekaer D (1996) Food Hydrocolloids 10:375–383

    CAS  Google Scholar 

  6. Rosell CM, Rojas JA, Benedito de Barber C (2001) Eur Food Res Technol 212:473–476

    Article  CAS  Google Scholar 

  7. Martinez-Anaya MA, Devesa A, Andreu P, Escriva C, Collar C (1999) Food Sci Technol Int 5:263–273

    CAS  Google Scholar 

  8. Rosell CM, Haros M, Escriva C, Benedito de Barber C (2001) J Agric Food Chem 49:2973–2977

    CAS  PubMed  Google Scholar 

  9. Haros M, Rosell CM, Benedito C (2002) Eur Food Res Technol 215:425–430

    Article  CAS  Google Scholar 

  10. Stephan H (1977) Getreide Mehl Brot 31:100–102

    Google Scholar 

  11. Smolitskii VE, Rakhmankulova RG, Sidorenko SI (1979) Khlebopek Konditer Prom 1:12–14

    Google Scholar 

  12. Labutina NV, Puchkova LI, Gubiev-Yuk, Ilyasov SG, Kats AM (1981) Khlebopek Konditer Prom 8:27–28

    Google Scholar 

  13. Morgenstern G (1985) Getreide Mehl Brot 39:46–49

    Google Scholar 

  14. Ferreira PBM, Watanabe E, Benassi VT (1999) Braz J Food Technol 2:91–95

    Google Scholar 

  15. Fik M, Surowka K (2002) J Sci Food Agric 82:1268–1275

    Article  CAS  Google Scholar 

  16. Barcenas ME, Haros M, Benedito C, Rosell CM (in press) Food Res Int

  17. Guarda A, Rosell CM, Benedito C, Galotto MJ (2003) Food hydrocolloids10.1016/S0268–005X(03)00080–8

  18. Schiraldi A, Piazza L, Brenna O, Vittadini E (1996) J. Therm Anal 47:1339–1360

    CAS  Google Scholar 

  19. He H, Hoseney RC (1990) Cereal Chem 67:603–607

    Google Scholar 

  20. Martin ML, Hoseney RC (1991) Cereal Chem 68:503–507

    CAS  Google Scholar 

  21. Rojas JA, Rosell CM, Benedito de Barber C (2001) Eur Food Res Technol 212:364–368

    Article  CAS  Google Scholar 

  22. Rosell CM, Rojas JA, Benedito de Barber C (2001) Food Hydrocolloids 15:75–81

    Article  CAS  Google Scholar 

  23. Biliaderis CG (1992) Food Technol 6:98–100, 102, 104, 106, 108–109, 145

    Google Scholar 

  24. Zeleznak KJ, Hoseney RC (1987) Cereal Chem 63:407–411

    Google Scholar 

  25. Czuchajowska Z, Pomeranz Y (1989) Cereal Chem 66:305–309

    Google Scholar 

  26. Leon A, Duran E, Benedito de Barber C (1997) Z Lebensm Unters Forsch 204:116–120

    Google Scholar 

  27. Ribotta PD, Leon AE, Añon MC (2003) Food Res Int 36:357–363

    Article  CAS  Google Scholar 

  28. AACC (1995) Approved methods of AACC, 9th edn, method 44–15A. The American Association of Cereal Chemists, St Paul, Minn., USA

  29. Biliaderis CG, Page CM, Maurice TJ, Juliano, BO (1986) J Agric Food Chem 34:6–14

    CAS  Google Scholar 

  30. Duran E, Leon A, Barber B, Benedito de Barber C (2001) Eur Food Res Technol 212:203–207

    Article  CAS  Google Scholar 

  31. Donovan JW (1979) Biopolymers 18:263–275

    CAS  Google Scholar 

  32. Biliaderis CG, Maurice TJ, Vose JR (1980) J Food Sci 45:1669–1680

    Google Scholar 

  33. Califano A, Añon MC (1990) J Food Sci 55:771–773

    CAS  Google Scholar 

  34. Jovanovich G, Zamponi RA, Lupano CE, Añon MC (1992) J Agric Food Chem 40:1789–1793

    CAS  Google Scholar 

  35. Ferrero C, Martino MN, Zaritzky NE (1993) Int J Food Sci Technol 28:481–498

    CAS  Google Scholar 

  36. Andreu P, Collar C, Martinez-Anaya MA (1999) Eur Food Res Technol 209:286–293

    Article  CAS  Google Scholar 

  37. Biliaderis CG, Arvanitoyannis I, Izydorczyk MS, Prokopowich DJ (1997) Starch 49:278–283

    CAS  Google Scholar 

  38. Rojas JA, Rosell CM, Benedito de Barber C (1999) Food Hydrocolloids 13:27–33

    Article  CAS  Google Scholar 

  39. Biliaderis CG, Zawistowski J (1990) Cereal Chem 67:240–246

    CAS  Google Scholar 

  40. Christianson DD (1982) Hydrocolloid interactions with starchesIn: DR Lineback, GE Inglett (eds) Food carbohydrates. IFT basic symposium series. AVI, Westport, Conn., pp 399–419

    Google Scholar 

  41. Ferrero C, Zaritzky NE (2000) J Sci Food Agric 80:2149–2158

    Article  CAS  Google Scholar 

  42. Berglund PT, Shelton DR, Freeman TP (1991) Cereal Chem 68:105–107

    Google Scholar 

  43. Lu W, Grant LA (1999) Cereal Chem 76:663–667

    CAS  Google Scholar 

  44. Qian J, Rayas-Duarte P, Grant L (1998) Cereal Chem 75:365–373

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Ministerio de Ciencia y Tecnologia Project (MCYT, AGL2002–4093) and Consejo Superior de Investigaciones Científicas (CSIC), Spain. M.E. Bárcenas would like to thank the University of the Americas, Puebla, Mexico for her grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina M. Rosell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bárcenas, M.E., Haros, M. & Rosell, C.M. An approach to studying the effect of different bread improvers on the staling of pre-baked frozen bread. Eur Food Res Technol 218, 56–61 (2003). https://doi.org/10.1007/s00217-003-0816-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-003-0816-y

Keywords

Navigation