Skip to main content
Log in

Quantitative determination of Lactobacillus spp. in milk using a series piezoelectric quartz crystal sensor

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

A series piezoelectric quartz crystal (SPQC) sensor was developed for quantitative determination of Lactobacillus spp. populations in milk. When the electrodes were immersed in a reaction cell with bacterial inoculum, the change of frequency was caused by the impedance change of the microbial metabolism. A significant frequency decrease was found due to the coagulation of milk when the Lactobacillus spp. was cultivated in the media. The SPQC sensor system established in this study demonstrated the specificity and selectivity for detection of Lactobacillus spp. in milk sample. The calibration curve of detection time against density of Lactobacillus spp. shows a linear correlation coefficient (R 2 = 0.8453) over the range of 102–2.4 × 105 CFU ml−1. The detection time was influenced by the addition of peptone and glucose. The sensor exhibited rapid (within 4 h) and enabled real time monitoring of Lactobacillus spp. growth. This system is potentially applicable to detect Lactobacillus spp. concentration at local farm when a suitable temperature control device is adapted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fuller R (1989) J Appl Bacteriol 66:365–378

    CAS  Google Scholar 

  2. Vinderola C, Reinheimer J (1999) Int Dairy J 9:497–505

    Article  Google Scholar 

  3. Verluyten J, Messens W, Vuyst L (2003) Appl Environ Microbiol 69:3833–3839

    Article  CAS  Google Scholar 

  4. Klaver F, Kingma F, Weerkamp A (1993) Neth Milk Dairy J 47:151–164

    Google Scholar 

  5. Dave R, Shah N (1997) Int Dairy J 7:31–41

    Article  Google Scholar 

  6. Ravula R, Shah N (1998) Aust J Dairy Tech 53:175–179

    CAS  Google Scholar 

  7. Lourens-Hattingh A, Viljoen B (2001) Int Dairy J 11:1–17

    Article  Google Scholar 

  8. Talwalkar A, Kailasapathy K (2004) Int Dairy J 14:143–149

    Article  Google Scholar 

  9. Hamilton-Miller J, Shah S, Winkler J (1999) Public Health Nutr 2:223–229

    Article  CAS  Google Scholar 

  10. Charteris W, Kelly P, Morelli L, Collins J (1997) Int J Food Microbiol 35:1–27

    Article  CAS  Google Scholar 

  11. Leoni E, Legnani P (2001) J Appl Microbiol 90:27–33

    Article  CAS  Google Scholar 

  12. Bej A, Mahbubani M, Dicesare J, Atlas R (1991) Appl Environ Microbiol 57:3529–3534

    CAS  Google Scholar 

  13. Dubernet S, Desmasures N, Gueguen M (2002) FEMS Microbiol Lett 214:271–275

    Article  CAS  Google Scholar 

  14. Yuki N, Watanabe K, Mike A, Tagami Y, Tanaka R, Ohwaki M, Morotomi M (1999) Int J Food Microbiol 48:51–57

    Article  CAS  Google Scholar 

  15. Durant J, Young C, Nisbet D, Stanker L, Ricke S (1997) Int J Food Microbiol 38:181–189

    Article  CAS  Google Scholar 

  16. Moon B, Kim Y (2003) Bull Korean Chem Soc 24:1203–1206

    Article  CAS  Google Scholar 

  17. Kang D, Siragusa G (1999) Appl Environ Microbiol 65:5334–5337

    CAS  Google Scholar 

  18. Lehoux D, Sanschagrin F, Levesgue R (2002) FEMS Microbiol Lett 210:73–80

    Article  CAS  Google Scholar 

  19. Levi K, Smedley J, Towner K (2003) Clin Microbiol Infect 9:754–758

    Article  CAS  Google Scholar 

  20. Kao Y, Liu Y, Shyu Y (2007) Food Res Int 40:71–79

    Article  CAS  Google Scholar 

  21. Ricke S, Schaefer D, Cook M, Kang K (1988) Appl Environ Microbiol 54:596–599

    CAS  Google Scholar 

  22. Felice C, Madrid R, Olivera J, Rotger V, Valentinuzzi M (1999) J Microbiol Meth 35:37–42

    Article  CAS  Google Scholar 

  23. Chang K, Jang H, Lee C, Lee Y, Yuan C, Lee S (2006) Biosens Bioelectron 21:1581–1590

    Article  CAS  Google Scholar 

  24. Aaku E, Collison E, Gashe B, Mpuchane S (2004) Food Control 15:181–186

    Article  Google Scholar 

  25. Abdul-Raouf U, Beuchat L, Ammar M (1993) Appl Environ Microbiol 59:2364–2368

    CAS  Google Scholar 

  26. van Netten P, Mossel D, Huis In t Veld J (1995) Int J Food Microbiol 25:1–9

  27. Ogawa M, Shimizu K, Nomoto K, Tanaka R, Hamabata T, Yamasaki S, Takeda T, Takeda Y (2001) Int J Food Microbiol 68:135–140

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the National Science Council of the Republic of China (Taiwan) for financially supporting this research under Contract No. NSC96-2113-M-264-001-MY2.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ku-Shang Chang or Chuan-Liang Hsu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jang, HD., Chang, KS., Lee, YG. et al. Quantitative determination of Lactobacillus spp. in milk using a series piezoelectric quartz crystal sensor. Eur Food Res Technol 229, 349–355 (2009). https://doi.org/10.1007/s00217-009-1047-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-009-1047-7

Keywords

Navigation