Skip to main content
Log in

Effects of postharvest oligochitosan treatment on anthracnose disease in citrus (Citrus sinensis L. Osbeck) fruit

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Citrus fruit (Citrus sinensis L. Osbeck) is susceptible to infection by Colletotrichum gloeosporioides during poststorage, which rapidly decreases sensory and nutritional quality of the fruit. The ability of oligochitosan treatment to control C. gloeosporioides of citrus fruit during storage was examined, and possible underlying mechanisms were discussed. Disease incidence and lesion diameter were lower in oligochitosan-treated fruits compared with their respective controls. The fruits dipped in oligochitosan showed increased contents of lignin, hydroxyproline-rich glycoprotein (HRGP), hydrogen peroxide (H2O2), ascorbate, glutathione, total phenol, and flavonoid compounds. In addition, enzymatic activities of superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6), peroxidase (POD, EC 1.11.1.7), polyphenoloxidase (PPO, EC 1.14.18.1), ascorbate peroxidase (APX, EC 1.11.1.11), and β-1, 3-glucanase (GLU, EC 3.2.1.39) also increased in citrus fruit peels, all of which were correlated with the onset of induced disease resistance. These results indicated that oligochitosan treatment can induce disease resistance of citrus fruit to C. gloeosporioides Penz. Oligochitosan can be a potential alternative to conventional control methods of postharvest anthracnose in citrus fruit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zeng KF, Deng YY, Ming J, Deng LL (2010) Induction of disease resistance and ROS metabolism in navel oranges by chitosan. Sci Hortic 126:223–228

    Article  CAS  Google Scholar 

  2. Yin H, Zhao XM, Du YG (2010) Oligochitosan: a plant diseases vaccine-A review. Carbohydr Polym 82:1–8

    Article  CAS  Google Scholar 

  3. Jiang YM, Li JR, Jiang WB (2005) Effects of chitosan coating on shelf life of cold stored litchi fruit at ambient temperature. LWT-Food Sci Technol 38:757–761

    Article  CAS  Google Scholar 

  4. Lin WL, Hu XY, Zhang WQ, Rogers WJ, Cai WM (2005) Hydrogen peroxide mediates defence responses induced by chitosans of different molecular weights in rice. J Plant Physiol 162:937–944

    Article  CAS  Google Scholar 

  5. Chien PJ, Chou CC (2006) Antifungal activity of chitosan and its application to control postharvest quality and fungal rotting of Tankan citrus fruit (Citrus tankan hayata). J Sci Food Agric 86:1964–1969

    Article  CAS  Google Scholar 

  6. Zhang FY, Feng B, Li W, Bai XF, Du YG, Zhang YK (2007) Induction of tobacco genes in response to oligochitosan. Mol Biol Rep 34:35–40

    Article  Google Scholar 

  7. Liu J, Tian SP, Meng XH, Xu Y (2007) Control effects of chitosan on post-harvest diseases and physiological response of tomato fruit. Postharvest Biol Technol 44:300–306

    Article  CAS  Google Scholar 

  8. Li Y, Yin H, Wang Q, Zhao XM, Du YG, Li FL (2009) Oligochitosan induced Brassica napus L. production of NO and H2O2 and their physiological function. Carbohydr Polym 75:612–617

    Article  CAS  Google Scholar 

  9. Lu H, Zhao XM, Wang WX, Yin H, Xu JG, Bai XF, Du YG (2010) Inhibition effect on tobacco mosaic virus and regulation effect on calreticulin of oligochitosan in tobacco by induced Ca2+ influx. Carbohydr Polym 82:136–142

    Article  CAS  Google Scholar 

  10. Meng XH, Qin GZ, Tian SP (2010) Influences of preharvest spraying Cryptococcus laurentii combined with postharvest chitosan coating on postharvest diseases and quality of table grapes in storage. LWT Food Sci Technol 43:596–601

    Article  CAS  Google Scholar 

  11. Meng XH, Yang LY, Kennedy JF, Tian SP (2010) Effects of chitosan and oligochitosan on growth of two fungal pathogens and physiological properties in pear fruit. Carbohydr Polym 81:70–75

    Article  CAS  Google Scholar 

  12. Yang LY, Zhao P, Wang L, Filippus I, Meng XH (2010) Synergistic effect of oligochitosan and silicon on inhibition of Monilinia fructicola infections. J Sci Food Agric 90:630–634

    CAS  Google Scholar 

  13. Yan JQ, Cao JK, Jiang WB, Zhao YM (2012) Effects of preharvest oligochitosan sprays on postharvest fungal diseases, storage quality, and defense responses in jujube (Zizyphus jujube Mill. cv. Dongzao) fruit. Sci Hortic 142:196–204

    Article  CAS  Google Scholar 

  14. Yang LY, Zhang JL, Bassett CL, Meng XH (2012) Difference between chitosan and oligochitosan in growth of Monilinia fructicola and control of brown rot in peach fruit. LWT Food Sci Technol 46:254–259

    Article  CAS  Google Scholar 

  15. Xu JG, Zhao XM, Wang XL, Zhao ZB, Du YG (2007) Oligochitosan inhibits Phytophthora capsici by penetrating the cell membrane and putative binding to intracellular targets. Pestic Biochem Physiol 88:167–175

    Article  CAS  Google Scholar 

  16. Bautista-Baños S, Hernández-Lauzardo AN, Velázquez-del Valle MG, Hernández-López M, Ait Barka E, Bosquez-Molina E et al (2006) Chitosan as a potential natural compound to control pre and postharvest diseases of horticultural commodities. Crop Prot 25:108–118

    Article  Google Scholar 

  17. Xu JG, Zhao XM, Han XW, Du YG (2007) Antifungal activity of oligochitosan against Phytophthora capsici and other plant pathogenic fungi in vitro. Pestic Biochem Physiol 87:220–228

    Article  CAS  Google Scholar 

  18. Guo WH, Ye ZQ, Wang GL, Zhao XM, Yuan JL, Du YG (2009) Measurement of oligochitosan–tobacco cell interaction by fluorometric method using europium complexes as fluorescence probes. Talanta 78:977–982

    Article  CAS  Google Scholar 

  19. Doares SH, Syrovets T, Weiler EW, Ryan CA (1995) Oligogalacturonides and chitosan activate plant defensive genes through the octadecanoid pathway. Proc Natl Acad Sci USA 92:4095–4098

    Article  CAS  Google Scholar 

  20. Wang WX, Li SG, Zhao XM, Du YG, Lin BC (2008) Oligochitosan induces cell death and hydrogen peroxide accumulation in tobacco suspension cells. Pestic Biochem Physiol 90:106–113

    Article  CAS  Google Scholar 

  21. Chen YF, Zhan Y, Zhao XM, Guo P, An HL, Du YG et al (2009) Functions of oligochitosan induced protein kinase in tobacco mosaic virus resistance and pathogenesis related proteins in tobacco. Plant Physiol Biochem 47:724–731

    Article  CAS  Google Scholar 

  22. Zhang HY, Zhao XM, Yang JL, Yin H, Wang WX, Lu H et al (2011) Nitric oxide production and its functional link with OIPK in tobacco defense response elicited by chitooligosaccharide. Plant Cell Rep 30:1153–1162

    Article  CAS  Google Scholar 

  23. Kinay P, Yildiz F, Sen F, Yildiz M, Karacali I (2005) Integration of pre- and postharvest treatments to minimize Penicillium decay of Satsuma mandarins. Postharvest Biol Technol 37:31–36

    Article  CAS  Google Scholar 

  24. McGovern RJ, Seijo TE, Hendricks K, Roberts PD (2012) New report of Colletotrichum gloeosporioides causing postbloom fruit drop on citrus in Bermuda. Can J Plant Pathol 34:187–194

    Article  Google Scholar 

  25. Zeng KF, Cao JK, Jiang WB (2006) Enhancing disease resistance in harvested mango (Mangifera indica L. cv. ‘Matisu’) fruit by salicylic acid. J Sci Food Agric 86:694–698

    Article  CAS  Google Scholar 

  26. Qin GZ, Tian SP, Xu Y (2004) Biocontrol of postharvest diseases on sweet cherries by four antagonistic yeasts in different storage conditions. Postharvest Biol Technol 31:51–58

    Article  Google Scholar 

  27. Morrison IM (1972) A semi-micro methods for the determination if lignin and its use in predicting the digestibility of forage crops. J Sci Food Agric 23:455–463

    Article  CAS  Google Scholar 

  28. Kivirikko KI, Laitinen O, Prockop DJ (1967) Modifications of a specific assay for hydroxyproline in urine. Anal Biochem 19:249–255

    Article  CAS  Google Scholar 

  29. Yao HJ, Tian SP (2005) Effects of pre- and post-harvest application of salicylic acid or methyl jasmonate on inducing disease resistance of sweet cherry fruit in storage. Postharvest Biol Technol 35:253–262

    Article  CAS  Google Scholar 

  30. Cao JK, Jiang WB, He H (2005) Induced resistance in Yali pear (Pyrus bretschneideri Rehd.) fruit against infection by Penicillium expansum by postharvest infiltration of acibenzolar-S-methyl. J Phytopathol 153:640–646

    Article  CAS  Google Scholar 

  31. Abeles FB, Forrence LE (1970) Temporal and hormonal control of β-1,3-glucanase in Phaseolus vulgaris L. Plant Physiol 45:395–400

    Article  CAS  Google Scholar 

  32. Patterson BD, MacRae EA, Ferguson IB (1984) Estimation of hydrogen peroxide in plant extracts using titanium (IV). Anal Biochem 139:487–492

    Article  CAS  Google Scholar 

  33. Havir EA, McHale NA (1987) Biochemical and developmental characterization of multiple form of catalase in tobacco leaves. Plant Physiol 84:450–455

    Article  CAS  Google Scholar 

  34. Prochazkova D, Sairam RK, Srivastava GC, Singh DV (2001) Oxidative stress and antioxidant activity as the basis of senescence in maize leaves. Plant Sci 161:765–771

    Article  CAS  Google Scholar 

  35. Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  36. El Bulk RE, Babiker EFE, El Tinay AH (1997) Changes in chemical composition of guava fruits during development and ripening. Food Chem 59:395–399

    Article  CAS  Google Scholar 

  37. Brehe JE, Bruch HB (1976) Enzymatic assay for glutathione. Anal Biochem 74:189–197

    Article  CAS  Google Scholar 

  38. Zauberman G, Ronen R, Akerman M, Weksler A, Rot I, Fuchs Y (1991) Postharvest retention of the red color of litchi fruit pericarp. Sci Hortic 47:89–97

    Article  CAS  Google Scholar 

  39. van Loon LC, van Strien EA (2002) The families of pathogenesis-related proteins, their activities and comparative analysis of PR-1 type proteins. Physiol Mol Plant Pathol 55:85–97

    Article  Google Scholar 

  40. Araceli AC, Elda CM, Edmundo LG, Ernesto GP (2007) Capsidiol production in pepper fruits (Capsicum annuum L.) induced by arachidonic acid is dependent of an oxidative burst. Physiol Mol Plant Pathol 70:69–76

    Article  CAS  Google Scholar 

  41. Baker CJ, Orlandi EW (1995) Active oxygen in plant pathogenesis. Annu Rev Phytopathol 33:299–321

    Article  CAS  Google Scholar 

  42. Foyer CH, Halliwell B (1976) The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta 133:21–25

    Article  CAS  Google Scholar 

  43. Thomsen B, Drumm-Herrel H, Mohr H (1992) Control of the appearance of ascorbate peroxidase (EC 1.11.1.11) in mustard seedling cotyledons by phytochrome and photooxidative treatments. Planta 186:600–608

    Article  CAS  Google Scholar 

  44. Fridovich I (1986) Biological effects of superoxide radical. Arch Biochem Biophys 247:1–11

    Article  CAS  Google Scholar 

  45. MacDougall AJ, Brett GM, Morris VJ, Rigby NM, Ridout MJ, Ring SG (2001) The effect of peptide-pectin interactions on the gelation behaviour of a plant cell wall pectin. Carbohydr Res 335:115–126

    Article  CAS  Google Scholar 

  46. Schnabelrauch LS, Kieliszewski M, Upham BL, Alizedeh H, Lamport DTA (1996) Isolation of pI 4.6 extensin peroxidase from tomato cell suspension cultures and identification of Val-Tyr-Lys as putative intermolecular cross-link site. Plant J 9:477–489

    Article  CAS  Google Scholar 

  47. Vander P, Vårum KM, Domard A, El Gueddari NE, Moerschbacher BM (1998) Comparison of the ability of partially N-acetylated chitosans and chitooligosaccharides to elicit resistance reactions in wheat leaves. Plant Pathol 118:1353–1359

    CAS  Google Scholar 

  48. Bhaskara Reddy MV, Arul J, Angers P, Couture L (1999) Chitosan treatment of wheat seeds induces resistance to Fusarium graminearum and improves seed quality. J Agric Food Chem 47:1208–1216

    Article  CAS  Google Scholar 

  49. Brownleader MD, Dey PM (1993) Purification of extensin from cell walls of tomato cells in suspension culture. Planta 191:457–469

    Article  CAS  Google Scholar 

  50. Cooper JB, Varner JE (1984) Cross-linking of soluble extensin in isolated cell walls. Plant Physiol 76:414–417

    Article  CAS  Google Scholar 

  51. Chen CQ, Bélanger RR, Benhamou N, Paulitz T (2000) Defense enzymes induced in cucumber roots by treatment with plant growth-promoting rhizobacteria (PGPR) and Pythiaum aphanidermatum. Physiol Mol Plant Pathol 56:13–23

    Article  CAS  Google Scholar 

  52. Ramiro DA, Guerreiro-Filho O, Mazzafera P (2006) Phenol contents, oxidase activities, and the resistance of coffee to the leaf miner Leucoptera coffeella. J Chem Ecol 32:1977–1988

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 31271958), the Key Project in Applied Technology of Chongqing Science and Technology Commission (Grant No. cstc2012gg-yyjsB80003), and the Scientific Research Foundation for the Returned Overseas Chinese Scholars of the State Education Ministry (the 45th).

Conflict of interest

None.

Compliance with Ethics Requirements

This article does not contain any studies with human or animal subjects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaifang Zeng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, L., Zeng, K., Zhou, Y. et al. Effects of postharvest oligochitosan treatment on anthracnose disease in citrus (Citrus sinensis L. Osbeck) fruit. Eur Food Res Technol 240, 795–804 (2015). https://doi.org/10.1007/s00217-014-2385-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-014-2385-7

Keywords

Navigation