Skip to main content
Log in

Isolation and identification of bound compounds from corn bran and their antioxidant and angiotensin I-converting enzyme inhibitory activities

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

A large amount of bound compounds, especially phenolics, present in corn bran has been underestimated because of difficulties in extracting them directly by organic solvents under mild conditions. Based on alkaline digestion, the bound compounds in corn bran were released and extracted with ethyl acetate. An investigation of the chemical constituents of the ethyl acetate (EtOAc) extract led to the isolation of ten compounds: trans-ferulic acid (1), trans-ferulic acid methyl ester (2), cis-ferulic acid (3), cis-ferulic acid methyl ester (4), vanillin (5), para-hydroxybenzaldehyde (6), 2-(1-oxo-2-hydroxyethyl) furan (7), graminones B (8), β-sitosterol glucoside (9), and sucrose (10). The chemical structures of these compounds were elucidated mainly by nuclear magnetic resonance and electrospray ionization mass spectrometry analysis. Graminones B was identified for the first time and showed potent angiotensin I-converting enzyme inhibitory activity, and compounds 1, 2, 3, and 4 displayed strong DPPH and ABTS+ radical-scavenging activity. This work represents the first recorded example of the isolation of compounds 3, 4, 8, and 9 from corn bran in the bound form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ostlund RE Jr, Racette SB, Okeke A, Stenson WF (2002) Phytosterols that are naturally present in commercial corn oil significantly reduce cholesterol absorption in humans. Am J Clin Nutr 75(6):1000–1004

    CAS  Google Scholar 

  2. Crittenden R, Karppinen S, Ojanen S, Tenkanen M, Fagerström R, Mättö J, Saarela M, Mattila-Sandholm T, Poutanen K (2002) In vitro fermentation of cereal dietary fibre carbohydrates by probiotic and intestinal bacteria. J Sci Food Agric 82(8):781–789

    Article  CAS  Google Scholar 

  3. Scott CE, Eldridge AL (2005) Comparison of carotenoid content in fresh, frozen and canned corn. J Food Compost Anal 18(6):551–559

    Article  CAS  Google Scholar 

  4. Wang S, Jia L, Chen D (2009) Pressurized CEC with gradient elution for separation of flavonoids from corn. J Sep Sci 32(3):388–393

    Article  CAS  Google Scholar 

  5. Vitaglione P, Napolitano A, Fogliano V (2008) Cereal dietary fibre: a natural functional ingredient to deliver phenolic compounds into the gut. Trends Food Sci Technol 19(9):451–463

    Article  CAS  Google Scholar 

  6. Adom KK, Liu RH (2002) Antioxidant activity of grains. J Agric Food Chem 50(21):6182–6187

    Article  CAS  Google Scholar 

  7. Liu RH (2007) Whole grain phytochemicals and health. J Cereal Sci 46(3):207–219

    Article  CAS  Google Scholar 

  8. Kris-Etherton PM, Hecker KD, Bonanome A, Coval SM, Binkoski AE, Hilpert KF, Griel AE, Etherton TD (2002) Bioactive compounds in foods: their role in the prevention of cardiovascular disease and cancer. Am J Med 113(9):71–88

    Article  Google Scholar 

  9. Bunzel M, Ralph J, Bruning P, Steinhart H (2006) Structural identification of dehydrotriferulic and dehydrotetraferulic acids isolated from insoluble maize bran fiber. J Agric Food Chem 54(17):6409–6418

    Article  CAS  Google Scholar 

  10. Funk C, Ralph J, Steinhart H, Bunzel M (2005) Isolation and structural characterisation of 8–O–4/8–O–4- and 8–8/8–O–4-coupled dehydrotriferulic acids from maize bran. Phytochemistry 66(3):363–371

    Article  CAS  Google Scholar 

  11. Bunzel M, Funk C, Steinhart H (2004) Semipreparative isolation of dehydrodiferulic and dehydrotriferulic acids as standard substances from maize bran. J Sep Sci 27(13):1080–1086

    Article  CAS  Google Scholar 

  12. Perez-Jimenez J, Torres JL (2011) Analysis of nonextractable phenolic compounds in foods: the current state of the art. J Agric Food Chem 59(24):12713–12724

    Article  CAS  Google Scholar 

  13. Adom KK, Sorrells ME, Liu RH (2003) Phytochemical profiles and antioxidant activity of wheat varieties. J Agric Food Chem 51(26):7825–7834

    Article  CAS  Google Scholar 

  14. Dykes L, Rooney L (2007) Phenolic compounds in cereal grains and their health benefits. Cereal Food World 52(3):105–111

    CAS  Google Scholar 

  15. Saura-Calixto F (2012) Concept and health-related properties of nonextractable polyphenols: the missing dietary polyphenols. J Agric Food Chem 60(45):11195–11200

    Article  CAS  Google Scholar 

  16. Arranz S, Silvan JM, Saura-Calixto F (2010) Nonextractable polyphenols, usually ignored, are the major part of dietary polyphenols: a study on the Spanish diet. J Agric Food Chem 54(11):1646–1658

    CAS  Google Scholar 

  17. Torre P, Aliakbarian B, Rivas B, Domínguez JM, Converti A (2008) Release of ferulic acid from corn cobs by alkaline hydrolysis. Biochem Eng J 40(3):500–506

    Article  CAS  Google Scholar 

  18. Anis Arnous ASM (2010) Discriminated release of phenolic substances from red wine grape skins (Vitis vinifera L.) by multicomponent enzymes treatment. Biochem Eng J 49:68–77

    Article  Google Scholar 

  19. Wang X, Zhang M, Zhao Y, Wang H, Liu T, Xin Z (2013) Pentadecyl ferulate, a potent antioxidant and antiproliferative agent from the halophyte Salicornia herbacea. Food Chem 141(3):2066–2074

    Article  CAS  Google Scholar 

  20. Mao G, Zou Y, Feng W, Wang W, Zhao T, Ye C, Zhu Y, Wu X, Yang L (2014) Extraction, preliminary characterization and antioxidant activity of Se-enriched Maitake polysaccharide. Carbohydr Polym 101:213–219

    Article  CAS  Google Scholar 

  21. Kwon YI, Vattem DA, Shetty K (2006) Evaluation of clonal herbs of Lamiaceae species for management of diabetes and hypertension. Asia Pac J Clin Nutr 15(1):107–118

    Google Scholar 

  22. Yoshioka T, Inokuchi T, Fujioka S, Kimura Y (2004) Phenolic compounds and flavonoids as plant growth regulators from fruit and leaf of Vitex rotundifolia. Z Naturforsch C 59(7/8):509–514

    CAS  Google Scholar 

  23. Tanaka A, Kato A, Tsuchiya T (1971) Isolation of methyl ferulate from rice bran oil. J Am Oil Chem Soc 48(3):95–97

    Article  CAS  Google Scholar 

  24. Akihisa T, Yasukawa K, Yamaura M, Ukiya M, Kimura Y, Shimizu N, Arai K (2000) Triterpene alcohol and sterol ferulates from rice bran and their anti-inflammatory effects. J Agric Food Chem 48(6):2313–2319

    Article  CAS  Google Scholar 

  25. Tang S, Xu R, Lin W, Duan H (2012) Jaspiferin A and B: two new secondary metabolites from the South China sea sponge jaspis stellifera. Rec Nat Prod 6(4):398–401

    CAS  Google Scholar 

  26. Fujimoto H, Negishi E, Yamaguchi K, Nishi N, Yamazaki M (1996) Isolation of new tremorgenic metabolites from an ascomycete, Corynascus setosus. Chem Pharm Bull 44(10):1843–1848

    Article  CAS  Google Scholar 

  27. Matsunaga K, Shibuya M, Ohizumi Y (1994) Graminone B, a novel lignan with vasodilative activity from Imperata cylindrica. J Natl Prod 57(12):1734–1736

    Article  CAS  Google Scholar 

  28. Faizi S, Ali M, Saleem R, Bibi S (2001) Complete 1H and 13C NMR assignments of stigma-5-en-3-O-β-glucoside and its acetyl derivative. Magn Reson Chem 39(7):399–405

    Article  CAS  Google Scholar 

  29. Huo Y, Guo C, Lu S, Zhang QY, Qin LP (2007) Chemical research of Caragana microphylla seeds. Chem Nat Compd 43(2):214–215

    Article  CAS  Google Scholar 

  30. Vermeirssen V, Van Camp J, Verstraete W (2002) Optimisation and validation of an angiotensin-converting enzyme inhibition assay for the screening of bioactive peptides. J Biochem Biophys Methods 51(1):75–87

    Article  CAS  Google Scholar 

  31. Masuda T, Yamada K, Maekawa T, Takeda Y, Yamaguchi H (2006) Antioxidant mechanism studies on ferulic acid: identification of oxidative coupling products from methyl ferulate and linoleate. J Agric Food Chem 54(16):6069–6074

    Article  CAS  Google Scholar 

  32. Graf E (1992) Antioxidant potential of ferulic acid. Free Radic Biol Med 13(4):435–448

    Article  CAS  Google Scholar 

  33. Ha JH, Lee DU, Lee JT, Kim JS, Yong CS, Kim J, Ha JS, Huh K (2000) 4-Hydroxybenzaldehyde from Gastrodia elata B1. is active in the antioxidation and GABAergic neuromodulation of the rat brain. J Ethnopharmacol 73(1):329–333

    Article  CAS  Google Scholar 

  34. Maitani Y, Kawano K, Yamada K, Nagai T, Takayama K (2001) Efficiency of liposomes surface-modified with soybean-derived sterylglucoside as a liver targeting carrier in HepG2 cells. J Control Release 75(3):381–389

    Article  CAS  Google Scholar 

  35. Wijesekara I, Kim SK (2010) Angiotensin-I-converting enzyme (ACE) inhibitors from marine resources: prospects in the pharmaceutical industry. Mar Drugs 8(4):1080–1093. doi:10.3390/md8041080

    Article  CAS  Google Scholar 

  36. Ondetti MA, Rubin B, Cushman DW (1977) Design of specific inhibitors of angiotensin-converting enzyme: new class of orally active antihypertensive agents. Science 196(4288):441–444

    Article  CAS  Google Scholar 

  37. Israili ZH, Hall WD (1992) Cough and angioneurotic edema associated with angiotensin-converting enzyme inhibitor therapy. A review of the literature and pathophysiology. Ann Intern Med 117(3):234–242

    Article  CAS  Google Scholar 

  38. Antonios TF, MacGregor GA (1995) Angiotensin converting enzyme inhibitors in hypertension: potential problems. J Int Soc Hypertension 13(3):S11–S16

    Article  CAS  Google Scholar 

  39. Liu L, Liu L, Lu B, Xia D, Zhang Y (2012) Evaluation of antihypertensive and antihyperlipidemic effects of bamboo shoot angiotensin converting enzyme inhibitory peptide in vivo. J Agric Food Chem 60(45):11351–11358. doi:10.1021/jf303471f

    Article  CAS  Google Scholar 

  40. Garcia-Tejedor A, Sanchez-Rivera L, Castello-Ruiz M, Recio I, Salom JB, Manzanares P (2014) Novel antihypertensive lactoferrin-derived peptides produced by Kluyveromyces marxianus: gastrointestinal stability profile and in vivo angiotensin I-converting enzyme (ACE) inhibition. J Agric Food Chem 62(7):1609–1616. doi:10.1021/jf4053868

    Article  CAS  Google Scholar 

  41. Yu Z, Yin Y, Zhao W, Chen F, Liu J (2014) Antihypertensive effect of angiotensin-converting enzyme inhibitory peptide RVPSL on spontaneously hypertensive rats by regulating gene expression of the renin-angiotensin system. J Agric Food Chem 62(4):912–917. doi:10.1021/jf405189y

    Article  CAS  Google Scholar 

  42. Actis-Goretta L, Ottaviani JI, Fraga CG (2006) Inhibition of angiotensin converting enzyme activity by flavanol-rich foods. J Agric Food Chem 54(1):229–234. doi:10.1021/jf052263o

    Article  CAS  Google Scholar 

  43. Dong J, Xu X, Liang Y, Head R, Bennett L (2011) Inhibition of angiotensin converting enzyme (ACE) activity by polyphenols from tea (Camellia sinensis) and links to processing method. Food Funct 2(6):310–319. doi:10.1039/c1fo10023h

    Article  CAS  Google Scholar 

  44. Ojeda D, Jimenez-Ferrer E, Zamilpa A, Herrera-Arellano A, Tortoriello J, Alvarez L (2010) Inhibition of angiotensin convertin enzyme (ACE) activity by the anthocyanins delphinidin- and cyanidin-3-O-sambubiosides from Hibiscus sabdariffa. J Ethnopharmacol 127(1):7–10. doi:10.1016/j.jep.2009.09.059

    Article  CAS  Google Scholar 

  45. Hackl LP, Cuttle G, Dovichi SS, Lima-Landman MT, Nicolau M (2002) Inhibition of angiotesin-converting enzyme by quercetin alters the vascular response to brandykinin and angiotensin I. Pharmacology 65(4):182–186

    Article  CAS  Google Scholar 

  46. Alam MA, Sernia C, Brown L (2013) Ferulic acid improves cardiovascular and kidney structure and function in hypertensive rats. J Cardiovasc Pharm 61(3):240–249. doi:10.1097/FJC.0b013e31827cb600

    Article  CAS  Google Scholar 

  47. Yesudas R, Gumaste U, Snyder R, Thekkumkara T (2012) Tannic acid down-regulates the angiotensin type 1 receptor through a MAPK-dependent mechanism. Mol Endocrinol 26(3):458–470. doi:10.1210/me.2011-1224

    Article  CAS  Google Scholar 

  48. Al Shukor N, Van Camp J, Gonzales GB, Staljanssens D, Struijs K, Zotti MJ, Raes K, Smagghe G (2013) Angiotensin-converting enzyme inhibitory effects by plant phenolic compounds: a study of structure activity relationships. J Agric Food Chem 61(48):11832–11839. doi:10.1021/jf404641v

    Article  CAS  Google Scholar 

  49. Parellada J, Suarez G, Guinea M (1998) Inhibition of zinc metallopeptidases by flavonoids and related phenolic compounds: structure-activity relationships. J Enzym Inhib 13(5):347–359

    Article  CAS  Google Scholar 

  50. Ende C, Gebhardt R (2004) Inhibition of matrix metalloproteinase-2 and -9 activities by selected flavonoids. Planta Med 70(10):1006–1008. doi:10.1055/s-2004-832630

    Article  CAS  Google Scholar 

  51. Palafox-Carlos H, Ayala-Zavala JF, Gonzalez-Aguilar GA (2011) The role of dietary fiber in the bioaccessibility and bioavailability of fruit and vegetable antioxidants. J Food Sci 76(1):R6–R15. doi:10.1111/j.1750-3841.2010.01957.x

    Article  CAS  Google Scholar 

  52. Kuhnau J (1976) The flavonoids. A class of semi-essential food components: their role in human nutrition. World Rev Nutr Diet 24:117–191

    CAS  Google Scholar 

  53. Manach C, Scalbert A, Morand C, Remesy C, Jimenez L (2004) Polyphenols: food sources and bioavailability. Am J Clin Nutr 79(5):727–747

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Fundamental Research Funds for the Central Universities (KYZ201118).

Conflict of interest

None.

Compliance with Ethics Requirements

This article does not contain any studies with human or animal subjects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhihong Xin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, J., Zhang, J., Wang, W. et al. Isolation and identification of bound compounds from corn bran and their antioxidant and angiotensin I-converting enzyme inhibitory activities. Eur Food Res Technol 241, 37–47 (2015). https://doi.org/10.1007/s00217-015-2432-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-015-2432-z

Keywords

Navigation