Skip to main content
Log in

On the fractional-order modeling of wine

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

This paper uses electrical impedance spectroscopy for characterizing different varieties of wine and compares the results with standard chemical analysis. In a first phase, the electrical impedance of wine samples is measured and modeled by means of fractional-order transfer functions. The impedance model parameters are then correlated with chemical data to unveil potential relationships between the distinct descriptions. In a second phase, the multidimensional scaling technique is adopted for data clustering and visualizing. The methodology is illustrated on a set of commercially available wines. The results demonstrate that fractional-order models represent conveniently the impedance of wine, with a reduced number of parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Åberg P, Birgersson U, Elsner P, Mohr P, Ollmar S (2011) Electrical impedance spectroscopy and the diagnostic accuracy for malignant melanoma. Exp Dermatol 20(8):648–652

    Article  Google Scholar 

  2. Adachi M, Sakamoto M, Jiu J, Ogata Y, Isoda S (2006) Determination of parameters of electron transport in dye-sensitized solar cells using electrochemical impedance spectroscopy. J Phys Chem B 110(28):13872–13880

    Article  CAS  Google Scholar 

  3. Ando Y, Maeda Y, Mizutani K, Wakatsuki N, Hagiwara S, Nabetani H (2016) Effect of air-dehydration pretreatment before freezing on the electrical impedance characteristics and texture of carrots. J Food Eng 169:114–121

    Article  CAS  Google Scholar 

  4. Baleanu D, Diethelm K, Scalas E, Trujillo JJ (2012) Fractional calculus: models and numerical methods. World Scientific Publishing, Singapore

    Book  Google Scholar 

  5. Borg I, Groenen PJ (2005) Modern multidimensional scaling: theory and applications. Springer, New York

    Google Scholar 

  6. Cole KS, Cole RH (1941) Dispersion and absorption in dielectrics I. Alternating current characteristics. J Chem Phys 9(4):341–351

    Article  CAS  Google Scholar 

  7. Davidson D, Cole R (1951) Dielectric relaxation in glycerol, propylene glycol, and \(n\)-propanol. J Chem Phys 19(12):1484–1490

    Article  CAS  Google Scholar 

  8. Debye P (1913) Interferenz von Röntgenstrahlen und Wärmebewegung. Ann Phys 348(1):49–92

    Article  Google Scholar 

  9. Debye PJW (1929) Polar molecules. The Chemical Catalog Company Incorporated, New york

  10. Diethelm K, Ford NJ (2002) Analysis of fractional differential equations. J Math Anal Appl 265(2):229–248

    Article  Google Scholar 

  11. El Khaled D, Castellano N, Gazquez J, Salvador RG, Manzano-Agugliaro F (2015) Cleaner quality control system using bioimpedance methods: a review for fruits and vegetables. J Clean Prod. doi:10.1016/j.jclepro.2015.10.096

  12. Emmert S, Wolf M, Gulich R, Krohns S, Kastner S, Lunkenheimer P, Loidl A (2011) Electrode polarization effects in broadband dielectric spectroscopy. Eur Phys J B 83(2):157–165

    Article  CAS  Google Scholar 

  13. Feldman Y, Puzenko A, Ryabov Y (2002) Non-Debye dielectric relaxation in complex materials. Chem Phys 284(1):139–168

    Article  CAS  Google Scholar 

  14. Fraga H, Malheiro A, Moutinho-Pereira J, Jones G, Alves F, Pinto JG, Santos J (2014) Very high resolution bioclimatic zoning of Portuguese wine regions: present and future scenarios. Reg Environ Change 14(1):295–306

    Article  Google Scholar 

  15. Freeborn TJ (2013) A survey of fractional-order circuit models for biology and biomedicine. IEEE J Emerg Sel Top Circuits Syst 3(3):416–424

    Article  Google Scholar 

  16. Freeborn TJ, Elwakil AS, Maundy B (2016) Compact wide frequency range fractional-order models of human body impedance against contact currents. Math Probl Eng 2016:10. doi:10.1155/2016/4967937

    Article  Google Scholar 

  17. Fröhlich H (1958) Theory of dielectrics: dielectric constant and dielectric loss. Clarendon Press, Oxford

    Google Scholar 

  18. Garra R, Giusti A, Mainardi F, Pagnini G (2014) Fractional relaxation with time-varying coefficient. Fract Calc Appl Anal 17(2):424–439

    Article  Google Scholar 

  19. Ghasemi S, Darestani MT, Abdollahi Z, Gomes VG (2015) Online monitoring of emulsion polymerization using electrical impedance spectroscopy. Polymer Int 64(1):66–75

    Article  CAS  Google Scholar 

  20. Glatthaar M, Riede M, Keegan N, Sylvester-Hvid K, Zimmermann B, Niggemann M, Hinsch A, Gombert A (2007) Efficiency limiting factors of organic bulk heterojunction solar cells identified by electrical impedance spectroscopy. Sol Energy Mater Sol Cells 91(5):390–393

    Article  CAS  Google Scholar 

  21. Groeber F, Engelhardt L, Egger S, Werthmann H, Monaghan M, Walles H, Hansmann J (2015) Impedance spectroscopy for the non-destructive evaluation of in vitro epidermal models. Pharm Res 32(5):1845–1854

    Article  CAS  Google Scholar 

  22. Havriliak S, Negami S (1966) A complex plane analysis of \(\alpha \)-dispersions in some polymer systems. In: Journal of Polymer Science Part C: Polymer Symposia, vol. 14, pp 99–117. Wiley Online Library

  23. Hilfer R (2002) Analytical representations for relaxation functions of glasses. J Non-Cryst Solids 305(1):122–126

    Article  CAS  Google Scholar 

  24. International Organisation of Vine and Wine (2016) Compendium of international methods of wines and musts analysis, vol 1. International Organisation of Vine and Wine, Paris

  25. Irvine JT, Sinclair DC, West AR (1990) Electroceramics: characterization by impedance spectroscopy. Adv Mater 2(3):132–138

    Article  CAS  Google Scholar 

  26. Jesus IS, Machado JT, Cunha JB (2008) Fractional electrical impedances in botanical elements. J Vib Control 14(9–10):1389–1402

    Article  Google Scholar 

  27. Kern R, Sastrawan R, Ferber J, Stangl R, Luther J (2002) Modeling and interpretation of electrical impedance spectra of dye solar cells operated under open-circuit conditions. Electrochim Acta 47(26):4213–4225

    Article  CAS  Google Scholar 

  28. Kerner TE, Paulsen KD, Hartov A, Soho SK, Poplack SP (2002) Electrical impedance spectroscopy of the breast: clinical imaging results in 26 subjects. IEEE Trans Med Imaging 21(6):638–645

    Article  Google Scholar 

  29. Kertész Á, Hlaváčová Z, Vozáry E, Staroňová L (2015) Relationship between moisture content and electrical impedance of carrot slices during drying. Int Agrophys 29(1):61–66

    Google Scholar 

  30. Kiryakova VS (1994) Generalized fractional calculus and applications. Longman Scientific & Technical, Harlow

    Google Scholar 

  31. Kruskal JB, Wish M (1978) Multidimensional scaling, vol 11. Sage, Newbury Park

    Book  Google Scholar 

  32. Kuang W, Nelson S (1997) Dielectric relaxation characteristics of fresh fruits and vegetables from 3 to 20 GHz. J Microw Power Electromagn Energy 32(2):115–123

    Article  Google Scholar 

  33. Laufer S, Ivorra A, Reuter VE, Rubinsky B, Solomon SB (2010) Electrical impedance characterization of normal and cancerous human hepatic tissue. Physiol Meas 31(7):995

    Article  Google Scholar 

  34. Lopes AM, Machado JT (2014) Fractional order models of leaves. J Vib Control 20(7):998–1008

    Article  Google Scholar 

  35. Lopes AM, Machado JT (2015) Modeling vegetable fractals by means of fractional-order equations. J Vib Control 22(8):2100–2108

    Article  Google Scholar 

  36. Machado J, Galhano A (2008) Fractional dynamics: a statistical perspective. J Comput Nonlinear Dyn 3(2):021,201

    Article  Google Scholar 

  37. Machado JT (2015) Matrix fractional systems. Commun Nonlinear Sci Numer Simul 25(1):10–18

    Article  Google Scholar 

  38. Maundy B, Elwakil A, Allagui A (2015) Extracting the parameters of the single-dispersion Cole bioimpedance model using a magnitude-only method. Comput Electron Agric 119:153–157

    Article  Google Scholar 

  39. Nigmatullin R, Nelson S (2006) Recognition of the “fractional” kinetics in complex systems: dielectric properties of fresh fruits and vegetables from 0.01 to 1.8 GHz. Signal Process 86(10):2744–2759

    Article  Google Scholar 

  40. Nigmatullin R, Ryabov YE (1997) Cole-Davidson dielectric relaxation as a self-similar relaxation process. Phys Solid State 39(1):87–90

    Article  Google Scholar 

  41. Novikov V, Wojciechowski K, Komkova O, Thiel T (2005) Anomalous relaxation in dielectrics. Equations with fractional derivatives. Mater Sci-Wroclaw 23(4):977

    CAS  Google Scholar 

  42. de Oliveira EC, Mainardi F, Vaz J Jr (2011) Models based on Mittag-Leffler functions for anomalous relaxation in dielectrics. Eur Phys J Special Top 193(1):161–171

    Article  Google Scholar 

  43. Pierzynowska-Korniak G, Żywica R, Wójcik J (2003) Electric properties of apple purée and pulpy apple juices. Eur Food Res Technol 216(5):385–389

    Article  CAS  Google Scholar 

  44. Riul A, de Sousa HC, Malmegrim RR, dos Santos DS, Carvalho AC, Fonseca FJ, Oliveira ON, Mattoso LH (2004) Wine classification by taste sensors made from ultra-thin films and using neural networks. Sens Actuators B: Chem 98(1):77–82

    Article  CAS  Google Scholar 

  45. Rosa EC, de Oliveira EC (2015) Relaxation equations: fractional models. arXiv preprint. arXiv:1510.01681

  46. Shepard RN (1962) The analysis of proximities: multidimensional scaling with an unknown distance function. I. Psychometrika 27(2):125–140

    Article  Google Scholar 

  47. Sibatov RT, Uchaikin DV (2010) Fractional relaxation and wave equations for dielectrics characterized by the Havriliak-Negami response function. arXiv preprint. arXiv:1008.3972

  48. Stanislavsky A, Weron K, Trzmiel J (2010) Subordination model of anomalous diffusion leading to the two-power-law relaxation responses. EPL (Europhys Lett) 91(4):40,003

    Article  Google Scholar 

  49. Tomkiewicz D, Piskier T (2012) A plant based sensing method for nutrition stress monitoring. Precis Agric 13(3):370–383

    Article  Google Scholar 

  50. Vosika Z, Lazarević M, Simic-Krstić J, Koruga D (2014) Modeling of bioimpedance for human skin based on fractional distributed-order modified Cole model. FME Trans 42(1):74–81

    Article  Google Scholar 

  51. Watanabe T, Orikasa T, Shono H, Koide S, Ando Y, Shiina T, Tagawa A (2016) The influence of inhibit avoid water defect responses by heat pretreatment on hot air drying rate of spinach. J Food Eng 168:113–118

    Article  Google Scholar 

  52. West AR, Sinclair DC, Hirose N (1997) Characterization of electrical materials, especially ferroelectrics, by impedance spectroscopy. J Electroceram 1(1):65–71

    Article  CAS  Google Scholar 

  53. Zhang L, Shen H, Luo Y (2011) A nondestructive method for estimating freshness of freshwater fish. Eur Food Res Technol 232(6):979–984

    Article  CAS  Google Scholar 

  54. Zhang M, Repo T, Willison J, Sutinen S (1995) Electrical impedance analysis in plant tissues: on the biological meaning of Cole-Cole \(\alpha \) in Scots pine needles. Eur Biophys J 24(2):99–106

    Article  Google Scholar 

  55. Zheng S, Fang Q, Cosic I (2009) An investigation on dielectric properties of major constituents of grape must using electrochemical impedance spectroscopy. Eur Food Res Technol 229(6):887–897

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to António M. Lopes.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights

This article does not contain any studies with human or animal subjects.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopes, A.M., Machado, J.A.T. & Ramalho, E. On the fractional-order modeling of wine. Eur Food Res Technol 243, 921–929 (2017). https://doi.org/10.1007/s00217-016-2806-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-016-2806-x

Keywords

Navigation